## Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling mach

Question

Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling machine follows a normal distribution with a mean of 12.4 ounces and a standard deviation of 0.04 ounce. Find the probability that the bottle contains between 12.3 and 12.36 ounces.

in progress
0

Math
2 hours
2021-10-13T01:18:08+00:00
2021-10-13T01:18:08+00:00 1 Answer
0
## Answers ( )

Answer:15.25% probability that the bottle contains between 12.3 and 12.36 ounces.

Step-by-step explanation:Problems of normally distributed samples are solved using the z-score formula.In a set with mean and standard deviation , the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:Find the probability that the bottle contains between 12.3 and 12.36 ounces.This is the pvalue of Z when X = 12.36 subtracted by the pvalue of Z when X = 12.3

X = 12.36has a pvalue of 0.1587

X = 12.3has a pvalue of 0.0062

0.1587 – 0.0062 = 0.1525

15.25% probability that the bottle contains between 12.3 and 12.36 ounces.