I. Usage:
DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)
Description of parameters:
labels: The name of the column to be deleted, given in the list
Axis: default is 0, which means deleting rows, so when deleting columns, specify axis=1;
index: Specify the row to be deleted directly
columns: directly specify the column to be deleted
inplace=False: By default, the deletion operation does not change the original data, but returns a new data frame after the deletion operation.
inplace=True: The original data will be deleted directly and cannot be returned after deletion.
2. There are two ways to delete rows and columns:
1) Combination of labels=None,axis=0
2) index or columns directly specify rows or columns to be deleted
Example:
>>>df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) >>>df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 #Drop columns, two methods are equivalent >>>df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>>df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 # In the first method, delete column must specify axis=1, otherwise it will report an error. >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) A B C D 2 8 9 10 11 >>> df.drop(index=[0, 1]) A B C D 2 8 9 10 11
Delete the specified row:
>>> import pandas as pd >>> df = {'DataBase':['mysql','test','test','test','test'],'table':['user','student','course','sc','book']} >>> df = pd.DataFrame(df) >>> df DataBase table 0 mysql user 1 test student 2 test course 3 test sc 4 test book #Delete the row whose table value is sc >>> df.drop(index=(df.loc[(df['table']=='sc')].index)) DataBase table 0 mysql user 1 test student 2 test course 4 test book
Delete multiple lines:
>>> df.drop(index=(df.loc[(df['DataBase']=='test')].index)) DataBase table 0 mysql user