It is realized by taking the mold
The ideas are as follows:
- Front refers to the first element of the queue, that is to say, arr[front] is the first element of the queue
Initial value of front = 0 - The rear points to the next position of the last element of the queue, because you want to make a space as a convention
Initial value of real = 0 - When the queue is full, the condition is (rear + 1)% maxsize = = front [Full]
- If the queue is empty, real = = front is empty
- When we analyze this way, the number of valid data in the queue (rear + maxsize - front)% maxsize
- Self drawing is easy to understand
Code implementation:
package queue; import java.util.Scanner; public class CircleQueue { public static void main(String[] args) { // Create a circular queue CircleArray queue = new CircleArray(4); //Description setting 4, the maximum effective data of its queue is 3 char key = ' '; // Receive user input Scanner scanner = new Scanner(System.in);// boolean loop = true; // Output a menu while (loop) { System.out.println("s(show): Display queue"); System.out.println("e(exit): Exit procedure"); System.out.println("a(add): Add data to queue"); System.out.println("g(get): Get data from queue"); System.out.println("h(head): View the data of the queue header"); key = scanner.next().charAt(0);// Receive a character switch (key) { case 's': queue.showQueue(); break; case 'a': System.out.println("Output a number"); int value = scanner.nextInt(); queue.addQueue(value); break; case 'g': // Remove data try { int res = queue.getQueue(); System.out.printf("The extracted data is%d\n", res); } catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } break; case 'h': // View the data of the queue header try { int res = queue.headQueue(); System.out.printf("The data of the queue header is%d\n", res); } catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } break; case 'e': // Sign out scanner.close(); loop = false; break; default: break; } } System.out.println("Program exit~~"); } } class CircleArray { private int maxSize; // Represents the maximum capacity of an array //The meaning of the front variable is adjusted: front refers to the first element of the queue, that is to say, arr[front] is the first element of the queue //Initial value of front = 0 private int front; //The meaning of the real variable is adjusted to point to the next position of the last element of the queue, because you want to make a space as a convention //Initial value of real = 0 private int rear; // Queue tail private int[] arr; // This data is used to store data and simulate queues public CircleArray(int arrMaxSize) { maxSize = arrMaxSize; arr = new int[maxSize]; } // Determine whether the queue is full public boolean isFull() { return (rear + 1) % maxSize == front; } // Judge whether the queue is empty public boolean isEmpty() { return rear == front; } // Add data to queue public void addQueue(int n) { // Determine whether the queue is full if (isFull()) { System.out.println("The queue is full, unable to add data~"); return; } //Add data directly arr[rear] = n; //Move rear, we must consider taking mould here rear = (rear + 1) % maxSize; } // Get the data of the queue and get out of the queue public int getQueue() { // Judge whether the queue is empty if (isEmpty()) { // By throwing an exception throw new RuntimeException("Queue is empty, unable to get data"); } // Here we need to analyze that front is the first element pointing to the queue // 1. First, keep the value corresponding to front to a temporary variable // 2. Move the front backward and consider taking the mold // 3. Return the temporarily saved variables int value = arr[front]; front = (front + 1) % maxSize; return value; } // Show all data for the queue public void showQueue() { // ergodic if (isEmpty()) { System.out.println("Queue empty, no data~~"); return; } // Idea: start from front and traverse how many elements // Use one's brains for (int i = front; i < front + size() ; i++) { System.out.printf("arr[%d]=%d\n", i % maxSize, arr[i % maxSize]); } } // Find the number of valid data in the current queue public int size() { // rear = 2 // front = 1 // maxSize = 3 return (rear + maxSize - front) % maxSize; } // Display the header data of the queue. Note that the data is not retrieved public int headQueue() { // judge if (isEmpty()) { throw new RuntimeException("Queue empty, no data~~"); } return arr[front]; } }
Published 6 original articles, won praise 1, visited 146