Continue to count the algorithm, this time it's nothing special, it's not so deep, it's also relatively basic
1. Variance sample
2. Covariance (standard deviation) - Sample
3. Coefficient of variation
4. Correlation coefficient
It is still the first thing to build a list, this function is written as a function, convenient to call later, and the last written function will inherit this time.
def create_rand_list(min_num,max_num,count_list):
case_list = []
while len(case_list) < 10:
rand_float = random.uniform(1,30)
if rand_float in case_list:
continue
case_list.append(rand_float)
case_list = [round(case,2) for case in case_list]
return case_list
Here is the history function
sum_fun() #accumulation
len_fun() #Statistical number
multiply_fun() #Multiplicative multiplication
sum_mean_fun() #arithmetic mean
sum_mean_rate() #Calculate the average to calculate the return
median_fun() #Median
modes_fun() #Mode number
ext_minus_fun() #range
geom_mean_fun() #Geometric mean
geom_mean_rate() #Geometric average return
New function code
import random # Sir, it's a random list,Existing functions, no more details rand_list = [15.79, 6.83, 12.83, 22.32, 17.92, 6.29, 10.19, 10.13, 24.23, 25.56] # 1,variance-sample S^2,list Each element in minus the whole list The sum of the squares of the average number of-1,Total variance not-1 def var_fun(rand_list): mean_num = sum_mean_fun(rand_list) #Calculate the average len_num = len_fun(rand_list) #Total computation var_list = [(x-mean_num)**2 for x in rand_list] var_sum = sum_fun(var_list) var_num = var_sum/(len_num - 1) return var_num # 2,covariance(standard deviation)-sample S,This is simple. Just square the variance def covar_fun(rand_list): var_num = var_fun(rand_list) covar_num = var_num ** 0.5 return covar_num # 3,Coefficient of variation CV,Measure of degree of variation, covariance/arithmetic mean*100% # Explain(Baidu Encyclopedia): For statistical analysis of data, if the coefficient of variation is greater than 15%,The data may be abnormal and should be eliminated def trans_coef_fun(rand_list): covar_num = covar_fun(rand_list) mean_num = sum_mean_fun(rand_list) trans_coef_num = covar_num / mean_num return trans_coef_num # 4,correlation coefficient-sample r,Represents a linear relationship between two dimensions,-1 < r < 1,The closer one is, the stronger the relationship between dimensions is # Because it's two dimensions, you need to input two-dimensional list,The algorithm is troublesome ''' ((x1-mean(x))(y1-mean(y))+(x2-mean(x))(y2-mean(y))+...(xn-mean(x))(yn-mean(y))) /((x1-mean(x))^2+(x2-mean(x))^2+...(xn-mean(x))^2)^0.5*((y1-mean(y))^2+(y2-mean(y))^2+...(yn-mean(y))^2)^0.5 ''' x_list = rand_list y_list = [4.39, 13.84, 9.21, 9.91, 15.69, 14.92, 25.77, 23.99, 8.15, 25.07] def pearson_fun(x_list,y_list): x_mean = sum_mean_fun(x_list) y_mean = sum_mean_fun(y_list) len_num = len_fun(x_list) if len_num == len_fun(y_list) xy_multiply_list = [(x_list[i]-x_mean)*(y_list[i]-y_mean) for i in range(len_num)] xy_multiply_num = sum_fun(xy_multiply_list) else: print 'input list wrong,another input try' return 1 x_covar_son_list = [(x-sum_mean_fun)**2 for x in x_list] y_covar_son_list = [(y-sum_mean_fun)**2 for y in y_list] x_covar_son_num = sum_fun(x_covar_son_list) y_covar_son_num = sum_fun(y_covar_son_list) xy_covar_son_multiply_num = (x_covar_son_num ** 0.5) * (y_covar_son_num ** 0.5) pearson_num = xy_multiply_num / xy_covar_son_multiply_num return pearson_num