MongoDB's aggregate query grammar has always made it difficult for me to get started very well. If it wasn't for project needs, I would seldom use it. But after using more, I would like it more and more. Especially after I came into contact with some aggregate query methods, I found that MongoDB has really improved a lot of efficiency in business. In short, MongoDB is really fragrant ~~~
Here are some of my usual records of using aggregated queries
Data set data format
{ "_id" : ObjectId("5caef7f2c0cd2730919a038f"), "sn" : "1904010010000001", "dev_id" : 200, "dt" : ISODate("2036-02-07T14:29:00.000Z"), "data" : { "BT" : 20.0, "CSQ" : 23, "GPSLati" : 39.8679244, "GPSLongti" : 116.6568387, "Humidity" : 0.0, "Temprature" : 0.0, "Voltage" : 0.0 } }
Query the latest data under all SNS
sn = ['1904010010000001', '1904010010000002', '1904010010000003'] pipeline = [ {'$match': {'sn': {'$in': sn}}}, {'$group': {'_id': "$sn", "data": {'$last': "$data"}, "dt": {'$last': "$dt"}}}, {'$sort': {"dt": 1}}] db.data.aggregate(pipeline)
Return results (to avoid data being too long, showing only one data)
[ { '_id': '1812010009000100', 'data': { 'Ap': 1009.7, 'BT': 20.0, 'CSQ': 24, 'GPSLati': 39.8681678, 'GPSLongti': 116.6591262, 'Humidity': 31.400000000000002, 'Temprature': 21.5, 'Voltage': 0.98, 'WindDir': 0, 'WindSpeed': 0.0 }, 'dt': datetime.datetime(2019, 4, 14, 17, 44) } ]
Query the average of statistics for a Sn every 10 minutes in 10 hours
sn = '1904010010000001' pipeline = [ {'$project': {'date': {'$substr': ["$dt", 0, 15]}, 'data': '$data'}}, {'$group': { '_id': "$date", 'temprature': {'$avg': '$data.Temprature'}, 'humidity': {'$avg': '$data.Humidity'}, 'wind_speed': {'$avg': '$data.WindSpeed'}, 'wind_dir': {'$avg': '$data.WindDir'} }}, {'$limit': 60}, {'$sort': {'_id': -1}} ] db.data.aggregate(pipeline)
Return results (to avoid data being too long, showing only one data)
[ { '_id': '2019-04-14T01:3', 'temprature': 10.861538461538462, 'humidity': 18.70769230769231, 'wind_speed': 0.49230769230769234, 'wind_dir': 167.6153846153846 } ]
Original address: Some aggregate query methods in Python MongoDB
My blog: Spatio-temporal router