T1:
The examination room wrote a
The method of false complexity of recursive merging
I'm a fool
90 points
Put recursion and merge to see which is put in front and then use heap for maintenance
#include<bits/stdc++.h> using namespace std; #define cs const #define re register #define pb push_back #define pii pair<int,int> #define ll long long #define fi first #define se second #define bg begin cs int RLEN=1<<20|1; inline char gc(){ static char ibuf[RLEN],*ib,*ob; (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin)); return (ib==ob)?EOF:*ib++; } inline int read(){ char ch=gc(); int res=0;bool f=1; while(!isdigit(ch))f^=ch=='-',ch=gc(); while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc(); return f?res:-res; } template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;} template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;} cs int N=200005; int v[N],a1[N],a2[N],n; #define lc (u<<1) #define rc ((u<<1)|1) #define mid ((l+r)>>1) struct Seg{ pii tr[N<<2]; inline pii merge(cs pii &a,cs pii &b){return a.fi<b.fi?a:b;} void build(int u,int l,int r,int *a){ if(l==r){tr[u].se=l;tr[u].fi=a[l];return;} build(lc,l,mid,a),build(rc,mid+1,r,a); tr[u]=merge(tr[lc],tr[rc]); } pii query(int u,int l,int r,int st,int des){ if(st<=l&&r<=des)return tr[u]; if(des<=mid)return query(lc,l,mid,st,des); if(mid<st)return query(rc,mid+1,r,st,des); return merge(query(lc,l,mid,st,des),query(rc,mid+1,r,st,des)); } }Seg[2]; #undef lc #undef rc #undef mid struct node{ int l,r,vl,vr; node(int a=0,int b=0,int c=0,int d=0):l(a),r(b),vl(c),vr(d){} friend inline bool operator <(cs node &a,cs node &b){ return v[a.vl]>v[b.vl]; } }; priority_queue<node>q; inline node get(int l,int r){ pii p=Seg[l&1].query(1,1,n,l,r),q=Seg[(l&1)^1].query(1,1,n,p.se+1,r); return node(l,r,p.se,q.se); } int main(){ #ifdef Stargazer freopen("lx.in","r",stdin); // freopen("my.out","w",stdout); #endif n=read(); for(int i=1;i<=n;i++){ v[i]=read(); if(i&1)a1[i]=v[i],a2[i]=1e9; else a2[i]=v[i],a1[i]=1e9; } Seg[1].build(1,1,n,a1),Seg[0].build(1,1,n,a2); q.push(get(1,n)); while(q.size()){ node now=q.top();q.pop(); cout<<v[now.vl]<<" "<<v[now.vr]<<" "; if(now.l<now.vl)q.push(get(now.l,now.vl-1)); if(now.vl<now.vr-1)q.push(get(now.vl+1,now.vr-1)); if(now.vr<now.r)q.push(get(now.vr+1,now.r)); } return 0; }
T2:
Popular group digit dpdpdp
I wrote a log2nlog^2nlog2n method
But it seems that the logloglog is easier to write?
I'm mentally retarded
#include<bits/stdc++.h> using namespace std; #define cs const #define re register #define pb push_back #define pii pair<int,int> #define ll long long #define fi first #define se second #define bg begin cs int RLEN=1<<20|1; inline char gc(){ static char ibuf[RLEN],*ib,*ob; (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin)); return (ib==ob)?EOF:*ib++; } inline int read(){ char ch=gc(); int res=0;bool f=1; while(!isdigit(ch))f^=ch=='-',ch=gc(); while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc(); return f?res:-res; } inline ll readll(){ char ch=gc(); ll res=0;bool f=1; while(!isdigit(ch))f^=ch=='-',ch=gc(); while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc(); return f?res:-res; } template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;} template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;} ll pw[20]; inline int getin(char c){ if(isdigit(c))return c-'0'; else return 10+c-'A'; } inline void write(int x){ if(x<10)cout<<x; else putchar('A'+x-10); } namespace solve1{ int dig[20],cnt; inline void calc1(ll pos,int res){ cnt=0; while(pos)dig[++cnt]=pos%16,pos/=16; reverse(dig+1,dig+cnt+1); write(dig[res]);puts(""); } inline void solve(ll n){ for(int len=1;;len++){ if(n/len<=pw[len]-pw[len-1]){ return calc1(pw[len-1]+(n-1)/len,(n-1)%len+1); } n-=(pw[len]-pw[len-1])*len; } } } namespace solve2{ ll f[20][2][2],s[20]; int whi; int dig[20],cnt; ll dfs(int pos,int lim,int zero){ if(!pos)return 0; if(f[pos][lim][zero])return f[pos][lim][zero]; ll ret=0; for(int L=(lim)?dig[pos]:15,i=0;i<=L;i++){ ret+=dfs(pos-1,lim&(i==dig[pos]),zero&(i==0)); if(whi==0&&i==0&&!zero){ if(lim&&i==dig[pos]) ret+=s[pos-1]+1; else ret+=pw[pos-1]; } if(whi!=0&&i==whi){ if(lim&&i==dig[pos]) ret+=s[pos-1]+1; else ret+=pw[pos-1]; } // cout<<pos<<" "<<i<<" "<<ret<<'\n'; } return f[pos][lim][zero]=ret; } inline void calc2(ll n,int res){ cnt=0;ll pos=n;int anc=0; while(pos)dig[++cnt]=pos%16,pos/=16; reverse(dig+1,dig+cnt+1); for(int i=1;i<=res;i++)if(dig[i]==whi)anc++; // cout<<anc<<" "<<n-1<<'\n'; cnt=0,pos=n-1; while(pos)dig[++cnt]=pos%16,pos/=16; for(int i=1;i<=cnt;i++)s[i]=s[i-1]+dig[i]*pw[i-1]; cout<<anc+dfs(cnt,1,1)<<'\n'; } inline void solve(ll n){ char ch=gc(); while(isspace(ch))ch=gc(); whi=getin(ch); memset(f,0,sizeof(f)); for(int len=1;;len++){ if(n/len<=pw[len]-pw[len-1]){ return calc2(pw[len-1]+(n-1)/len,(n-1)%len+1); } n-=(pw[len]-pw[len-1])*len; } } } inline void solve(){ int op=read(); if(op==1)solve1::solve(readll()); else solve2::solve(readll()); } int main(){ #ifdef Stargazer freopen("lx.in","r",stdin); // freopen("my.out","w",stdout); #endif pw[0]=1; for(int i=1;pw[i-1]<=1e18;i++)pw[i]=pw[i-1]*16; int T=read(); while(T--)solve(); }
T3:
I'm a vegetable
Not at all
Let f[i][j]f[i][j]f[i][j] indicate that there are three lines of jjj columns and each line has a number of black schemes
Consider a column by column enumeration. If there are no rows in the previous column, insert them into the original row iii
f[i][j]∗(1+i+(i2))−>f[i][j+1]f[i][j]*(1+i+{i\choose 2})->f[i][j+1]f[i][j]∗(1+i+(2i))−>f[i][j+1]
f[i][j]∗(i+k+2k+2)−>f[i+k][j+1]f[i][j]*{i+k+2\choose k+2}->f[i+k][j+1]f[i][j]∗(k+2i+k+2)−>f[i+k][j+1]
The second factor is due to the fact that the original row iii is in the jjj column
So we can consider adding k+2k+2k+2 lines, two of which represent the
Set another 222 positions to handle the situation that there is no original line iii as the beginning / end
And then it's all right
#include<bits/stdc++.h> using namespace std; #define cs const #define re register #define pb push_back #define pii pair<int,int> #define ll long long #define fi first #define se second #define bg begin cs int RLEN=1<<20|1; inline char gc(){ static char ibuf[RLEN],*ib,*ob; (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin)); return (ib==ob)?EOF:*ib++; } inline int read(){ char ch=gc(); int res=0;bool f=1; while(!isdigit(ch))f^=ch=='-',ch=gc(); while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc(); return f?res:-res; } template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;} template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;} cs int mod=998244353,G=3; inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;} inline int dec(int a,int b){a-=b;return a+(a>>31&mod);} inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;} inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;} inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;} inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;} inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;} inline int Inv(int x){return ksm(x,mod-2);} cs int N=32005; int rev[N]; inline void init_rev(int lim){ for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1)); } inline void ntt(int *f,int lim,int kd){ for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]); for(int a0,a1,mid=1;mid<lim;mid<<=1){ int wn=ksm(G,(mod-1)/(mid<<1)); for(int i=0;i<lim;i+=mid<<1) for(int j=0,w=1;j<mid;j++,Mul(w,wn)) a0=f[i+j],a1=mul(f[i+j+mid],w),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1); } if(kd==-1){ reverse(f+1,f+lim); for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv); } } int fac[N],ifac[N]; inline void init_inv(cs int len=N-5){ fac[0]=ifac[0]=1; for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i); ifac[len]=Inv(fac[len]); for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1); } inline int C(int n,int m){return n<m?0:mul(fac[n],mul(ifac[m],ifac[n-m]));} int lim,n,m,f[N],a[N],g[N]; int main(){ #ifdef Stargazer freopen("lx.in","r",stdin); #endif n=read(),m=read(); lim=1;init_inv(); while(lim<=n*2)lim<<=1; init_rev(lim); for(int i=1;i<=n;i++)g[i]=ifac[i+2]; ntt(g,lim,1); a[0]=1; for(int i=1;i<=m;i++){ for(int j=0;j<=n;j++)f[j]=mul(a[j],ifac[j]); ntt(f,lim,1); for(int j=0;j<lim;j++)Mul(f[j],g[j]); ntt(f,lim,-1); for(int j=0;j<=n;j++)a[j]=add(mul(f[j],fac[j+2]),mul(a[j],(1+j+C(j,2))%mod)); for(int j=0;j<lim;j++)f[j]=0; } int ret=0; for(int i=0;i<=n;i++)Add(ret,mul(C(n,i),a[i])); cout<<ret<<'\n'; }