Links to the original text: https://blog.csdn.net/weixin_36474809/article/details/90030682
PyTorch Project Application Example (8) Fixed Weight | Sequential Training Network
Application Example of PyTorch Project (7) Model Adding Relay loss | Relay Supervisory Optimization
Former coco re-grouping and network training according to grouping
Examples of PyTorch Project Application (IV) Decy Setting up learning_rate
Original PyTorch Project Application Example (1) Loading (Local | Official) Pre-training Model
# -*- coding: utf-8 -* """ Created by Xingxiangrui on 2019.5.9 This code is to : 1. copy image from source_image_dir to the target_image_dir 2. And generate .txt file for further training in which each line is : image_name.jpg (tab) image_label (from 0) such as: image_01.jpg 0 iamge_02.jpg 1 ... image_02.jpg 0 """ # import matplotlib.pyplot as plt import numpy as np from PIL import Image import os import random # variables need to be change source_image_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/single-poly-defect/poly_OK" target_image_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/data_for_resnet_classification" txt_file_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/data_for_resnet_classification/TxtFile" prefix="poly_OK" class_label=1 # label 0: single_OK ; label_1: poly_OK ; label 2: poly_defect print("Program Start......") print("-"*20) print("-"*20) print("-"*20) # load image list in the source dir source_image_list = os.listdir(source_image_dir) for idx in range(len(source_image_list)): if '.png' in source_image_list[idx-1]: continue elif '.jpg' in source_image_list[idx-1]: continue else: del source_image_list[idx-1] # shuffle image list print("initial list:") print source_image_list random.shuffle(source_image_list) print("shuffled list:") print source_image_list # train list and val list source_train_list=[] source_val_list=[] for idx in range(len(source_image_list)): if idx<len(source_image_list)/4: source_val_list.append(source_image_list[idx-1]) else: source_train_list.append(source_image_list[idx-1]) print ("train_list") print source_train_list print("val_list") print source_val_list # create label_file or write label file txt_file_train_name="train.txt" txt_file_val_name="val.txt" txt_file_train_path=os.path.join(txt_file_dir, txt_file_train_name) txt_file_val_path=os.path.join(txt_file_dir, txt_file_val_name) train_txt_file= open(txt_file_train_path,"a") val_txt_file= open(txt_file_val_path,"a") # write train images and labels print("write train images and labels......") for source_image_name in source_train_list: print source_image_name # read dource images and rename path_source_img = os.path.join(source_image_dir, source_image_name) src_img = Image.open(path_source_img) full_image_name=prefix+"_train_"+source_image_name print(full_image_name) # save renamed image to the target dir target_image_path=os.path.join(target_image_dir, full_image_name) src_img.save(target_image_path) # write image names and labels line_strings= full_image_name+"\t"+str(class_label)+"\n" train_txt_file.write(line_strings) # write val images and labels print("write val images and labels......") for source_image_name in source_val_list: print source_image_name # read dource images and rename path_source_img = os.path.join(source_image_dir, source_image_name) src_img = Image.open(path_source_img) full_image_name=prefix+"_val_"+source_image_name print(full_image_name) # save renamed image to the target dir target_image_path=os.path.join(target_image_dir, full_image_name) src_img.save(target_image_path) # write image names and labels line_strings= full_image_name+"\t"+str(class_label)+"\n" val_txt_file.write(line_strings) print("source_image_dir:") print source_image_dir print("target_image_dir:") print target_image_dir print("prefix:") print prefix print("label:") print class_label print("image numbers:") print len(source_image_list) ''' import numpy as np from PIL import Image import os import random # variables need to be change source_image_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/single-poly-defect/poly_defect_gen" target_image_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/data_for_resnet_classification" txt_file_dir="/Users/baidu/Desktop/used/SuZhouRuiTu_dataset/data_for_resnet_classification/TxtFile" prefix="gen_poly_defect" class_label=2 # label 0: single_OK ; label_1: poly_OK ; label 2: poly_defect print("Program Start......") print("-"*20) print("-"*20) print("-"*20) # load image list in the source dir source_image_list = os.listdir(source_image_dir) for idx in range(len(source_image_list)): if '.png' in source_image_list[idx-1]: continue elif '.jpg' in source_image_list[idx-1]: continue else: del source_image_list[idx-1] # create label_file or write label file txt_file_train_name="train.txt" # txt_file_val_name="val.txt" txt_file_train_path=os.path.join(txt_file_dir, txt_file_train_name) # txt_file_val_path=os.path.join(txt_file_dir, txt_file_val_name) train_txt_file= open(txt_file_train_path,"a") # val_txt_file= open(txt_file_val_path,"a") # write train images and labels print("write train images and labels......") for source_image_name in source_image_list: print source_image_name # read dource images and rename path_source_img = os.path.join(source_image_dir, source_image_name) src_img = Image.open(path_source_img) full_image_name=prefix+"_train_"+source_image_name print(full_image_name) # save renamed image to the target dir target_image_path=os.path.join(target_image_dir, full_image_name) src_img.save(target_image_path) # write image names and labels line_strings= full_image_name+"\t"+str(class_label)+"\n" train_txt_file.write(line_strings) print("source_image_dir:") print source_image_dir print("target_image_dir:") print target_image_dir print("prefix:") print prefix print("label:") print class_label print("image numbers:") print len(source_image_list) '''