Description
Because 151 is both a prime number and a palindrome number (from left to right and from right to left is the same), so 151 is a palindrome prime number. Write a program to find all palindrome prime numbers between ranges [a, b] (5 <= a < B <= 100,000,000);
Input
Line 1: Two integers a and b Output output a list of palindrome prime numbers, one line at a time.
Sample Input
5 500
Sample Output
5
7
11
101
131
151
181
191
313
353
373
383
Problem Solution: Sometimes the median range of topics is very large (1e9), but in fact it is not so much used, in the future in the face of similar situations can be considered in this regard.
You can first calculate all the prime numbers of palindromes, and then look them up. The number of palindromes between 1 and 1 E9 seems to be only 781.
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cmath> using namespace std; const int Max=1e8; int prime[1000]={2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929,10301,10501,10601,11311,11411,12421,12721,12821,13331,13831,13931,14341,14741,15451,15551,16061,16361,16561,16661,17471,17971,18181,18481,19391,19891,19991,30103,30203,30403,30703,30803,31013,31513,32323,32423,33533,34543,34843,35053,35153,35353,35753,36263,36563,37273,37573,38083,38183,38783,39293,70207,70507,70607,71317,71917,72227,72727,73037,73237,73637,74047,74747,75557,76367,76667,77377,77477,77977,78487,78787,78887,79397,79697,79997,90709,91019,93139,93239,93739,94049,94349,94649,94849,94949,95959,96269,96469,96769,97379,97579,97879,98389,98689,1003001,1008001,1022201,1028201,1035301,1043401,1055501,1062601,1065601,1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,1123211,1126211,1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,1177711,1178711,1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,1212121,1215121,1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,1486841,1489841,1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,1548451,1550551,1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,1589851,1594951,1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,1633361,1640461,1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,1685861,1688861,1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,1963691,1968691,1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,1993991,1995991,1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,3072703,3073703,3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,3135313,3140413,3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,3198913,3211123,3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,3443443,3444443,3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,3487843,3503053,3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,3586853,3589853,3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,3635363,3643463,3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,3716173,3717173,3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,3983893,3991993,3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,7057507,7065607,7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,7100017,7114117,7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,7156517,7158517,7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,7250527,7256527,7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,7594957,7600067,7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,7665667,7666667,7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,7718177,7722277,7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,7774777,7778777,7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,7831387,7832387,7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,9136319,9149419,9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,9209029,9212129,9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,9277729,9280829,9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,9351539,9357539,9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,9440449,9446449,9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,9779779,9781879,9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,9818189,9820289,9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,9896989,9902099,9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,9927299,9931399,9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,9989899}; int main() { int a,b; scanf("%d%d",&a,&b); for(int i=0;i<800;i++) { if(prime[i]>=a&&prime[i]<=b) printf("%d\n",prime[i]); } return 0; }