Objectives:
Understanding the characteristics of numerical and categorical data Using MinMax Scaler to Realize Normalization of Characteristic Data Standardization of Characteristic Data Using StandarScaler
Feature preprocessing:
The process of transforming feature data into feature data of more suitable algorithmic model by some transformation functions
Dimensionalization of numerical data (dimensionless, mathematical terms, data conversion from different specifications to uniform specifications)
Normalization: scaling based on maximum and minimum values, default range 0-1, easy to be affected by outliers, poor stability, only suitable for small scale data scenarios. Standardization: raw data changes to 0-1 directly
Feature preprocessing API:
sklearn.preprocession Why normalization / standardization? The units or sizes of features vary greatly, or the variance of one feature is several orders of magnitude larger than that of other features, which easily affects (dominates) the target results, making some algorithms unable to learn other features.
1. Normalization
Definition: Mapping data to (default: [0,1]) by transforming raw data
X' = (x - min)/(max - min) x'' = x' * (mx - mi) + mi
(max is the maximum value of a column and min is the minimum value of a column. mx and mi are default mx of 1 and mi of 0 respectively for specified interval values.
sklearn.preprocessing.MinMaxScaler(feature_range = (0,1))
MinMaxScaler.fit_transform(X)
Data in X:numpy array format [n_samples, n_features] Return: Converted array with the same shape
Normalized summary: Note that the maximum and minimum values are variable. In addition, the maximum and minimum values are very vulnerable to outliers, so this method has poor robustness, knowledge and traditional precise small data scenarios.
from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler import pandas as pd #normalization def minmax_demo(): #Use sklearn Incoming data sets iris = load_iris() data = pd.DataFrame(iris.data, columns = iris.feature_names) data_new = data.iloc[:, :4].values print("data_new:\n", data_new) transfer = MinMaxScaler(feature_range = [1, 2]) #default feature_range yes[0, 1] data_minmax_value = transfer.fit_transform(data_new) print("data_minmax_value:\n", data_minmax_value) return None if __name__ == '__main__': minmax_demo() //Output results: data_new: [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.1] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.1 1.5 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1. ] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1. ] [5.9 3. 4.2 1.5] [6. 2.2 4. 1. ] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5] [5.8 2.7 4.1 1. ] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.1 2.8 4.7 1.2] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] [6.7 3. 5. 1.7] [6. 2.9 4.5 1.5] [5.7 2.6 3.5 1. ] [5.5 2.4 3.8 1.1] [5.5 2.4 3.7 1. ] [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [5.4 3. 4.5 1.5] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2] [6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1. ] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [5.1 2.5 3. 1.1] [5.7 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9] [7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2] [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7] [7.3 2.9 6.3 1.8] [6.7 2.5 5.8 1.8] [7.2 3.6 6.1 2.5] [6.5 3.2 5.1 2. ] [6.4 2.7 5.3 1.9] [6.8 3. 5.5 2.1] [5.7 2.5 5. 2. ] [5.8 2.8 5.1 2.4] [6.4 3.2 5.3 2.3] [6.5 3. 5.5 1.8] [7.7 3.8 6.7 2.2] [7.7 2.6 6.9 2.3] [6. 2.2 5. 1.5] [6.9 3.2 5.7 2.3] [5.6 2.8 4.9 2. ] [7.7 2.8 6.7 2. ] [6.3 2.7 4.9 1.8] [6.7 3.3 5.7 2.1] [7.2 3.2 6. 1.8] [6.2 2.8 4.8 1.8] [6.1 3. 4.9 1.8] [6.4 2.8 5.6 2.1] [7.2 3. 5.8 1.6] [7.4 2.8 6.1 1.9] [7.9 3.8 6.4 2. ] [6.4 2.8 5.6 2.2] [6.3 2.8 5.1 1.5] [6.1 2.6 5.6 1.4] [7.7 3. 6.1 2.3] [6.3 3.4 5.6 2.4] [6.4 3.1 5.5 1.8] [6. 3. 4.8 1.8] [6.9 3.1 5.4 2.1] [6.7 3.1 5.6 2.4] [6.9 3.1 5.1 2.3] [5.8 2.7 5.1 1.9] [6.8 3.2 5.9 2.3] [6.7 3.3 5.7 2.5] [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]] data_minmax_value: [[1.22222222 1.625 1.06779661 1.04166667] [1.16666667 1.41666667 1.06779661 1.04166667] [1.11111111 1.5 1.05084746 1.04166667] [1.08333333 1.45833333 1.08474576 1.04166667] [1.19444444 1.66666667 1.06779661 1.04166667] [1.30555556 1.79166667 1.11864407 1.125 ] [1.08333333 1.58333333 1.06779661 1.08333333] [1.19444444 1.58333333 1.08474576 1.04166667] [1.02777778 1.375 1.06779661 1.04166667] [1.16666667 1.45833333 1.08474576 1. ] [1.30555556 1.70833333 1.08474576 1.04166667] [1.13888889 1.58333333 1.10169492 1.04166667] [1.13888889 1.41666667 1.06779661 1. ] [1. 1.41666667 1.01694915 1. ] [1.41666667 1.83333333 1.03389831 1.04166667] [1.38888889 2. 1.08474576 1.125 ] [1.30555556 1.79166667 1.05084746 1.125 ] [1.22222222 1.625 1.06779661 1.08333333] [1.38888889 1.75 1.11864407 1.08333333] [1.22222222 1.75 1.08474576 1.08333333] [1.30555556 1.58333333 1.11864407 1.04166667] [1.22222222 1.70833333 1.08474576 1.125 ] [1.08333333 1.66666667 1. 1.04166667] [1.22222222 1.54166667 1.11864407 1.16666667] [1.13888889 1.58333333 1.15254237 1.04166667] [1.19444444 1.41666667 1.10169492 1.04166667] [1.19444444 1.58333333 1.10169492 1.125 ] [1.25 1.625 1.08474576 1.04166667] [1.25 1.58333333 1.06779661 1.04166667] [1.11111111 1.5 1.10169492 1.04166667] [1.13888889 1.45833333 1.10169492 1.04166667] [1.30555556 1.58333333 1.08474576 1.125 ] [1.25 1.875 1.08474576 1. ] [1.33333333 1.91666667 1.06779661 1.04166667] [1.16666667 1.45833333 1.08474576 1. ] [1.19444444 1.5 1.03389831 1.04166667] [1.33333333 1.625 1.05084746 1.04166667] [1.16666667 1.45833333 1.08474576 1. ] [1.02777778 1.41666667 1.05084746 1.04166667] [1.22222222 1.58333333 1.08474576 1.04166667] [1.19444444 1.625 1.05084746 1.08333333] [1.05555556 1.125 1.05084746 1.08333333] [1.02777778 1.5 1.05084746 1.04166667] [1.19444444 1.625 1.10169492 1.20833333] [1.22222222 1.75 1.15254237 1.125 ] [1.13888889 1.41666667 1.06779661 1.08333333] [1.22222222 1.75 1.10169492 1.04166667] [1.08333333 1.5 1.06779661 1.04166667] [1.27777778 1.70833333 1.08474576 1.04166667] [1.19444444 1.54166667 1.06779661 1.04166667] [1.75 1.5 1.62711864 1.54166667] [1.58333333 1.5 1.59322034 1.58333333] [1.72222222 1.45833333 1.66101695 1.58333333] [1.33333333 1.125 1.50847458 1.5 ] [1.61111111 1.33333333 1.61016949 1.58333333] [1.38888889 1.33333333 1.59322034 1.5 ] [1.55555556 1.54166667 1.62711864 1.625 ] [1.16666667 1.16666667 1.38983051 1.375 ] [1.63888889 1.375 1.61016949 1.5 ] [1.25 1.29166667 1.49152542 1.54166667] [1.19444444 1. 1.42372881 1.375 ] [1.44444444 1.41666667 1.54237288 1.58333333] [1.47222222 1.08333333 1.50847458 1.375 ] [1.5 1.375 1.62711864 1.54166667] [1.36111111 1.375 1.44067797 1.5 ] [1.66666667 1.45833333 1.57627119 1.54166667] [1.36111111 1.41666667 1.59322034 1.58333333] [1.41666667 1.29166667 1.52542373 1.375 ] [1.52777778 1.08333333 1.59322034 1.58333333] [1.36111111 1.20833333 1.49152542 1.41666667] [1.44444444 1.5 1.6440678 1.70833333] [1.5 1.33333333 1.50847458 1.5 ] [1.55555556 1.20833333 1.66101695 1.58333333] [1.5 1.33333333 1.62711864 1.45833333] [1.58333333 1.375 1.55932203 1.5 ] [1.63888889 1.41666667 1.57627119 1.54166667] [1.69444444 1.33333333 1.6440678 1.54166667] [1.66666667 1.41666667 1.6779661 1.66666667] [1.47222222 1.375 1.59322034 1.58333333] [1.38888889 1.25 1.42372881 1.375 ] [1.33333333 1.16666667 1.47457627 1.41666667] [1.33333333 1.16666667 1.45762712 1.375 ] [1.41666667 1.29166667 1.49152542 1.45833333] [1.47222222 1.29166667 1.69491525 1.625 ] [1.30555556 1.41666667 1.59322034 1.58333333] [1.47222222 1.58333333 1.59322034 1.625 ] [1.66666667 1.45833333 1.62711864 1.58333333] [1.55555556 1.125 1.57627119 1.5 ] [1.36111111 1.41666667 1.52542373 1.5 ] [1.33333333 1.20833333 1.50847458 1.5 ] [1.33333333 1.25 1.57627119 1.45833333] [1.5 1.41666667 1.61016949 1.54166667] [1.41666667 1.25 1.50847458 1.45833333] [1.19444444 1.125 1.38983051 1.375 ] [1.36111111 1.29166667 1.54237288 1.5 ] [1.38888889 1.41666667 1.54237288 1.45833333] [1.38888889 1.375 1.54237288 1.5 ] [1.52777778 1.375 1.55932203 1.5 ] [1.22222222 1.20833333 1.33898305 1.41666667] [1.38888889 1.33333333 1.52542373 1.5 ] [1.55555556 1.54166667 1.84745763 2. ] [1.41666667 1.29166667 1.69491525 1.75 ] [1.77777778 1.41666667 1.83050847 1.83333333] [1.55555556 1.375 1.77966102 1.70833333] [1.61111111 1.41666667 1.81355932 1.875 ] [1.91666667 1.41666667 1.94915254 1.83333333] [1.16666667 1.20833333 1.59322034 1.66666667] [1.83333333 1.375 1.89830508 1.70833333] [1.66666667 1.20833333 1.81355932 1.70833333] [1.80555556 1.66666667 1.86440678 2. ] [1.61111111 1.5 1.69491525 1.79166667] [1.58333333 1.29166667 1.72881356 1.75 ] [1.69444444 1.41666667 1.76271186 1.83333333] [1.38888889 1.20833333 1.6779661 1.79166667] [1.41666667 1.33333333 1.69491525 1.95833333] [1.58333333 1.5 1.72881356 1.91666667] [1.61111111 1.41666667 1.76271186 1.70833333] [1.94444444 1.75 1.96610169 1.875 ] [1.94444444 1.25 2. 1.91666667] [1.47222222 1.08333333 1.6779661 1.58333333] [1.72222222 1.5 1.79661017 1.91666667] [1.36111111 1.33333333 1.66101695 1.79166667] [1.94444444 1.33333333 1.96610169 1.79166667] [1.55555556 1.29166667 1.66101695 1.70833333] [1.66666667 1.54166667 1.79661017 1.83333333] [1.80555556 1.5 1.84745763 1.70833333] [1.52777778 1.33333333 1.6440678 1.70833333] [1.5 1.41666667 1.66101695 1.70833333] [1.58333333 1.33333333 1.77966102 1.83333333] [1.80555556 1.41666667 1.81355932 1.625 ] [1.86111111 1.33333333 1.86440678 1.75 ] [2. 1.75 1.91525424 1.79166667] [1.58333333 1.33333333 1.77966102 1.875 ] [1.55555556 1.33333333 1.69491525 1.58333333] [1.5 1.25 1.77966102 1.54166667] [1.94444444 1.41666667 1.86440678 1.91666667] [1.55555556 1.58333333 1.77966102 1.95833333] [1.58333333 1.45833333 1.76271186 1.70833333] [1.47222222 1.41666667 1.6440678 1.70833333] [1.72222222 1.45833333 1.74576271 1.83333333] [1.66666667 1.45833333 1.77966102 1.95833333] [1.72222222 1.45833333 1.69491525 1.91666667] [1.41666667 1.29166667 1.69491525 1.75 ] [1.69444444 1.5 1.83050847 1.91666667] [1.66666667 1.54166667 1.79661017 2. ] [1.66666667 1.41666667 1.71186441 1.91666667] [1.55555556 1.20833333 1.6779661 1.75 ] [1.61111111 1.41666667 1.71186441 1.79166667] [1.52777778 1.58333333 1.74576271 1.91666667] [1.44444444 1.41666667 1.69491525 1.70833333]]
2. Standardization
Definition: Transform the original data to a mean of 0 and a standard deviation of 1.
Formula: X'= (x - mean)/
mean is the average and is the standard deviation.
For normalization, if there are outliers that affect the maximum and minimum values, the results will obviously change.
For standardization, if there are abnormal points, due to a certain amount of data, the effect of the discussed abnormal points on the average value is not large, so the variance change is small.
Summary: It is more stable when there are enough samples, and it is suitable for modern noisy data scenarios.
from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler import pandas as pd def standard_demo(): iris = load_iris() data = pd.DataFrame(iris.data, columns = iris.feature_names) data_new = data.iloc[:, :4].values print("data_new:\n", data_new) transfer = StandardScaler() data_standard_value = transfer.fit_transform(data_new) print("data_standard_value:\n", data_standard_value) return None if __name__ == '__main__': standard_demo() //Output results: data_new: [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.1] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.1 1.5 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1. ] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1. ] [5.9 3. 4.2 1.5] [6. 2.2 4. 1. ] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5] [5.8 2.7 4.1 1. ] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.1 2.8 4.7 1.2] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] [6.7 3. 5. 1.7] [6. 2.9 4.5 1.5] [5.7 2.6 3.5 1. ] [5.5 2.4 3.8 1.1] [5.5 2.4 3.7 1. ] [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [5.4 3. 4.5 1.5] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2] [6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1. ] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [5.1 2.5 3. 1.1] [5.7 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9] [7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2] [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7] [7.3 2.9 6.3 1.8] [6.7 2.5 5.8 1.8] [7.2 3.6 6.1 2.5] [6.5 3.2 5.1 2. ] [6.4 2.7 5.3 1.9] [6.8 3. 5.5 2.1] [5.7 2.5 5. 2. ] [5.8 2.8 5.1 2.4] [6.4 3.2 5.3 2.3] [6.5 3. 5.5 1.8] [7.7 3.8 6.7 2.2] [7.7 2.6 6.9 2.3] [6. 2.2 5. 1.5] [6.9 3.2 5.7 2.3] [5.6 2.8 4.9 2. ] [7.7 2.8 6.7 2. ] [6.3 2.7 4.9 1.8] [6.7 3.3 5.7 2.1] [7.2 3.2 6. 1.8] [6.2 2.8 4.8 1.8] [6.1 3. 4.9 1.8] [6.4 2.8 5.6 2.1] [7.2 3. 5.8 1.6] [7.4 2.8 6.1 1.9] [7.9 3.8 6.4 2. ] [6.4 2.8 5.6 2.2] [6.3 2.8 5.1 1.5] [6.1 2.6 5.6 1.4] [7.7 3. 6.1 2.3] [6.3 3.4 5.6 2.4] [6.4 3.1 5.5 1.8] [6. 3. 4.8 1.8] [6.9 3.1 5.4 2.1] [6.7 3.1 5.6 2.4] [6.9 3.1 5.1 2.3] [5.8 2.7 5.1 1.9] [6.8 3.2 5.9 2.3] [6.7 3.3 5.7 2.5] [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]] data_standard_value: [[-9.00681170e-01 1.03205722e+00 -1.34127240e+00 -1.31297673e+00] [-1.14301691e+00 -1.24957601e-01 -1.34127240e+00 -1.31297673e+00] [-1.38535265e+00 3.37848329e-01 -1.39813811e+00 -1.31297673e+00] [-1.50652052e+00 1.06445364e-01 -1.28440670e+00 -1.31297673e+00] [-1.02184904e+00 1.26346019e+00 -1.34127240e+00 -1.31297673e+00] [-5.37177559e-01 1.95766909e+00 -1.17067529e+00 -1.05003079e+00] [-1.50652052e+00 8.00654259e-01 -1.34127240e+00 -1.18150376e+00] [-1.02184904e+00 8.00654259e-01 -1.28440670e+00 -1.31297673e+00] [-1.74885626e+00 -3.56360566e-01 -1.34127240e+00 -1.31297673e+00] [-1.14301691e+00 1.06445364e-01 -1.28440670e+00 -1.44444970e+00] [-5.37177559e-01 1.49486315e+00 -1.28440670e+00 -1.31297673e+00] [-1.26418478e+00 8.00654259e-01 -1.22754100e+00 -1.31297673e+00] [-1.26418478e+00 -1.24957601e-01 -1.34127240e+00 -1.44444970e+00] [-1.87002413e+00 -1.24957601e-01 -1.51186952e+00 -1.44444970e+00] [-5.25060772e-02 2.18907205e+00 -1.45500381e+00 -1.31297673e+00] [-1.73673948e-01 3.11468391e+00 -1.28440670e+00 -1.05003079e+00] [-5.37177559e-01 1.95766909e+00 -1.39813811e+00 -1.05003079e+00] [-9.00681170e-01 1.03205722e+00 -1.34127240e+00 -1.18150376e+00] [-1.73673948e-01 1.72626612e+00 -1.17067529e+00 -1.18150376e+00] [-9.00681170e-01 1.72626612e+00 -1.28440670e+00 -1.18150376e+00] [-5.37177559e-01 8.00654259e-01 -1.17067529e+00 -1.31297673e+00] [-9.00681170e-01 1.49486315e+00 -1.28440670e+00 -1.05003079e+00] [-1.50652052e+00 1.26346019e+00 -1.56873522e+00 -1.31297673e+00] [-9.00681170e-01 5.69251294e-01 -1.17067529e+00 -9.18557817e-01] [-1.26418478e+00 8.00654259e-01 -1.05694388e+00 -1.31297673e+00] [-1.02184904e+00 -1.24957601e-01 -1.22754100e+00 -1.31297673e+00] [-1.02184904e+00 8.00654259e-01 -1.22754100e+00 -1.05003079e+00] [-7.79513300e-01 1.03205722e+00 -1.28440670e+00 -1.31297673e+00] [-7.79513300e-01 8.00654259e-01 -1.34127240e+00 -1.31297673e+00] [-1.38535265e+00 3.37848329e-01 -1.22754100e+00 -1.31297673e+00] [-1.26418478e+00 1.06445364e-01 -1.22754100e+00 -1.31297673e+00] [-5.37177559e-01 8.00654259e-01 -1.28440670e+00 -1.05003079e+00] [-7.79513300e-01 2.42047502e+00 -1.28440670e+00 -1.44444970e+00] [-4.16009689e-01 2.65187798e+00 -1.34127240e+00 -1.31297673e+00] [-1.14301691e+00 1.06445364e-01 -1.28440670e+00 -1.44444970e+00] [-1.02184904e+00 3.37848329e-01 -1.45500381e+00 -1.31297673e+00] [-4.16009689e-01 1.03205722e+00 -1.39813811e+00 -1.31297673e+00] [-1.14301691e+00 1.06445364e-01 -1.28440670e+00 -1.44444970e+00] [-1.74885626e+00 -1.24957601e-01 -1.39813811e+00 -1.31297673e+00] [-9.00681170e-01 8.00654259e-01 -1.28440670e+00 -1.31297673e+00] [-1.02184904e+00 1.03205722e+00 -1.39813811e+00 -1.18150376e+00] [-1.62768839e+00 -1.74477836e+00 -1.39813811e+00 -1.18150376e+00] [-1.74885626e+00 3.37848329e-01 -1.39813811e+00 -1.31297673e+00] [-1.02184904e+00 1.03205722e+00 -1.22754100e+00 -7.87084847e-01] [-9.00681170e-01 1.72626612e+00 -1.05694388e+00 -1.05003079e+00] [-1.26418478e+00 -1.24957601e-01 -1.34127240e+00 -1.18150376e+00] [-9.00681170e-01 1.72626612e+00 -1.22754100e+00 -1.31297673e+00] [-1.50652052e+00 3.37848329e-01 -1.34127240e+00 -1.31297673e+00] [-6.58345429e-01 1.49486315e+00 -1.28440670e+00 -1.31297673e+00] [-1.02184904e+00 5.69251294e-01 -1.34127240e+00 -1.31297673e+00] [ 1.40150837e+00 3.37848329e-01 5.35295827e-01 2.64698913e-01] [ 6.74501145e-01 3.37848329e-01 4.21564419e-01 3.96171883e-01] [ 1.28034050e+00 1.06445364e-01 6.49027235e-01 3.96171883e-01] [-4.16009689e-01 -1.74477836e+00 1.37235899e-01 1.33225943e-01] [ 7.95669016e-01 -5.87763531e-01 4.78430123e-01 3.96171883e-01] [-1.73673948e-01 -5.87763531e-01 4.21564419e-01 1.33225943e-01] [ 5.53333275e-01 5.69251294e-01 5.35295827e-01 5.27644853e-01] [-1.14301691e+00 -1.51337539e+00 -2.60824029e-01 -2.61192967e-01] [ 9.16836886e-01 -3.56360566e-01 4.78430123e-01 1.33225943e-01] [-7.79513300e-01 -8.19166497e-01 8.03701950e-02 2.64698913e-01] [-1.02184904e+00 -2.43898725e+00 -1.47092621e-01 -2.61192967e-01] [ 6.86617933e-02 -1.24957601e-01 2.50967307e-01 3.96171883e-01] [ 1.89829664e-01 -1.97618132e+00 1.37235899e-01 -2.61192967e-01] [ 3.10997534e-01 -3.56360566e-01 5.35295827e-01 2.64698913e-01] [-2.94841818e-01 -3.56360566e-01 -9.02269170e-02 1.33225943e-01] [ 1.03800476e+00 1.06445364e-01 3.64698715e-01 2.64698913e-01] [-2.94841818e-01 -1.24957601e-01 4.21564419e-01 3.96171883e-01] [-5.25060772e-02 -8.19166497e-01 1.94101603e-01 -2.61192967e-01] [ 4.32165405e-01 -1.97618132e+00 4.21564419e-01 3.96171883e-01] [-2.94841818e-01 -1.28197243e+00 8.03701950e-02 -1.29719997e-01] [ 6.86617933e-02 3.37848329e-01 5.92161531e-01 7.90590793e-01] [ 3.10997534e-01 -5.87763531e-01 1.37235899e-01 1.33225943e-01] [ 5.53333275e-01 -1.28197243e+00 6.49027235e-01 3.96171883e-01] [ 3.10997534e-01 -5.87763531e-01 5.35295827e-01 1.75297293e-03] [ 6.74501145e-01 -3.56360566e-01 3.07833011e-01 1.33225943e-01] [ 9.16836886e-01 -1.24957601e-01 3.64698715e-01 2.64698913e-01] [ 1.15917263e+00 -5.87763531e-01 5.92161531e-01 2.64698913e-01] [ 1.03800476e+00 -1.24957601e-01 7.05892939e-01 6.59117823e-01] [ 1.89829664e-01 -3.56360566e-01 4.21564419e-01 3.96171883e-01] [-1.73673948e-01 -1.05056946e+00 -1.47092621e-01 -2.61192967e-01] [-4.16009689e-01 -1.51337539e+00 2.35044910e-02 -1.29719997e-01] [-4.16009689e-01 -1.51337539e+00 -3.33612130e-02 -2.61192967e-01] [-5.25060772e-02 -8.19166497e-01 8.03701950e-02 1.75297293e-03] [ 1.89829664e-01 -8.19166497e-01 7.62758643e-01 5.27644853e-01] [-5.37177559e-01 -1.24957601e-01 4.21564419e-01 3.96171883e-01] [ 1.89829664e-01 8.00654259e-01 4.21564419e-01 5.27644853e-01] [ 1.03800476e+00 1.06445364e-01 5.35295827e-01 3.96171883e-01] [ 5.53333275e-01 -1.74477836e+00 3.64698715e-01 1.33225943e-01] [-2.94841818e-01 -1.24957601e-01 1.94101603e-01 1.33225943e-01] [-4.16009689e-01 -1.28197243e+00 1.37235899e-01 1.33225943e-01] [-4.16009689e-01 -1.05056946e+00 3.64698715e-01 1.75297293e-03] [ 3.10997534e-01 -1.24957601e-01 4.78430123e-01 2.64698913e-01] [-5.25060772e-02 -1.05056946e+00 1.37235899e-01 1.75297293e-03] [-1.02184904e+00 -1.74477836e+00 -2.60824029e-01 -2.61192967e-01] [-2.94841818e-01 -8.19166497e-01 2.50967307e-01 1.33225943e-01] [-1.73673948e-01 -1.24957601e-01 2.50967307e-01 1.75297293e-03] [-1.73673948e-01 -3.56360566e-01 2.50967307e-01 1.33225943e-01] [ 4.32165405e-01 -3.56360566e-01 3.07833011e-01 1.33225943e-01] [-9.00681170e-01 -1.28197243e+00 -4.31421141e-01 -1.29719997e-01] [-1.73673948e-01 -5.87763531e-01 1.94101603e-01 1.33225943e-01] [ 5.53333275e-01 5.69251294e-01 1.27454998e+00 1.71090158e+00] [-5.25060772e-02 -8.19166497e-01 7.62758643e-01 9.22063763e-01] [ 1.52267624e+00 -1.24957601e-01 1.21768427e+00 1.18500970e+00] [ 5.53333275e-01 -3.56360566e-01 1.04708716e+00 7.90590793e-01] [ 7.95669016e-01 -1.24957601e-01 1.16081857e+00 1.31648267e+00] [ 2.12851559e+00 -1.24957601e-01 1.61574420e+00 1.18500970e+00] [-1.14301691e+00 -1.28197243e+00 4.21564419e-01 6.59117823e-01] [ 1.76501198e+00 -3.56360566e-01 1.44514709e+00 7.90590793e-01] [ 1.03800476e+00 -1.28197243e+00 1.16081857e+00 7.90590793e-01] [ 1.64384411e+00 1.26346019e+00 1.33141568e+00 1.71090158e+00] [ 7.95669016e-01 3.37848329e-01 7.62758643e-01 1.05353673e+00] [ 6.74501145e-01 -8.19166497e-01 8.76490051e-01 9.22063763e-01] [ 1.15917263e+00 -1.24957601e-01 9.90221459e-01 1.18500970e+00] [-1.73673948e-01 -1.28197243e+00 7.05892939e-01 1.05353673e+00] [-5.25060772e-02 -5.87763531e-01 7.62758643e-01 1.57942861e+00] [ 6.74501145e-01 3.37848329e-01 8.76490051e-01 1.44795564e+00] [ 7.95669016e-01 -1.24957601e-01 9.90221459e-01 7.90590793e-01] [ 2.24968346e+00 1.72626612e+00 1.67260991e+00 1.31648267e+00] [ 2.24968346e+00 -1.05056946e+00 1.78634131e+00 1.44795564e+00] [ 1.89829664e-01 -1.97618132e+00 7.05892939e-01 3.96171883e-01] [ 1.28034050e+00 3.37848329e-01 1.10395287e+00 1.44795564e+00] [-2.94841818e-01 -5.87763531e-01 6.49027235e-01 1.05353673e+00] [ 2.24968346e+00 -5.87763531e-01 1.67260991e+00 1.05353673e+00] [ 5.53333275e-01 -8.19166497e-01 6.49027235e-01 7.90590793e-01] [ 1.03800476e+00 5.69251294e-01 1.10395287e+00 1.18500970e+00] [ 1.64384411e+00 3.37848329e-01 1.27454998e+00 7.90590793e-01] [ 4.32165405e-01 -5.87763531e-01 5.92161531e-01 7.90590793e-01] [ 3.10997534e-01 -1.24957601e-01 6.49027235e-01 7.90590793e-01] [ 6.74501145e-01 -5.87763531e-01 1.04708716e+00 1.18500970e+00] [ 1.64384411e+00 -1.24957601e-01 1.16081857e+00 5.27644853e-01] [ 1.88617985e+00 -5.87763531e-01 1.33141568e+00 9.22063763e-01] [ 2.49201920e+00 1.72626612e+00 1.50201279e+00 1.05353673e+00] [ 6.74501145e-01 -5.87763531e-01 1.04708716e+00 1.31648267e+00] [ 5.53333275e-01 -5.87763531e-01 7.62758643e-01 3.96171883e-01] [ 3.10997534e-01 -1.05056946e+00 1.04708716e+00 2.64698913e-01] [ 2.24968346e+00 -1.24957601e-01 1.33141568e+00 1.44795564e+00] [ 5.53333275e-01 8.00654259e-01 1.04708716e+00 1.57942861e+00] [ 6.74501145e-01 1.06445364e-01 9.90221459e-01 7.90590793e-01] [ 1.89829664e-01 -1.24957601e-01 5.92161531e-01 7.90590793e-01] [ 1.28034050e+00 1.06445364e-01 9.33355755e-01 1.18500970e+00] [ 1.03800476e+00 1.06445364e-01 1.04708716e+00 1.57942861e+00] [ 1.28034050e+00 1.06445364e-01 7.62758643e-01 1.44795564e+00] [-5.25060772e-02 -8.19166497e-01 7.62758643e-01 9.22063763e-01] [ 1.15917263e+00 3.37848329e-01 1.21768427e+00 1.44795564e+00] [ 1.03800476e+00 5.69251294e-01 1.10395287e+00 1.71090158e+00] [ 1.03800476e+00 -1.24957601e-01 8.19624347e-01 1.44795564e+00] [ 5.53333275e-01 -1.28197243e+00 7.05892939e-01 9.22063763e-01] [ 7.95669016e-01 -1.24957601e-01 8.19624347e-01 1.05353673e+00] [ 4.32165405e-01 8.00654259e-01 9.33355755e-01 1.44795564e+00] [ 6.86617933e-02 -1.24957601e-01 7.62758643e-01 7.90590793e-01]]
Reference link: https://www.cnblogs.com/ftl1012/p/10498480.html