nativePollOnce of MessageQueue in Android

Keywords: Android Java Linux SDK

The event loop in Android SDK has become a commonplace problem, and the Handler Looper MessageQueue has been studied thoroughly.
But when I look back at my analysis, I always feel that I'm not thorough enough. I feel that I haven't completely eaten everything, so today I look back at the event cycle mechanism in Android, and notice that
When getting the next message in MessageQueue, a native call, nativepolonce, will be executed. Look at the source code of Android system and find the content.

An explanation from a master

First of all, let's go to suoha, a master of stack overflow, to solve this problem.( android - what is message queue native poll once in android? )Original answer:

Short answer:

The nativePollOnce method is used to "wait" till the next Message becomes available. If the time spent during this call is long, your main (UI) thread has no real work to do and waits for next events to process. There's no need to worry about that.

Explanation:

Because the "main" thread is responsible for drawing UI and handling various events, it's Runnable has a loop which processes all these events. The loop is managed by a Looper and its job is quite straightforward: it processes all Messages in the MessageQueue.

A Message is added to the queue for example in response to input events, as frame rendering callback or even your own Handler.post calls. Sometimes the main thread has no work to do (that is, no messages in the queue), which may happen e.g. just after finishing rendering single frame (the thread has just drawn one frame and is ready for the next one, just waits for a proper time). Two Java methods in the MessageQueue class are interesting to us: Message next() and boolean enqueueMessage(Message, long). Message next(), as its name suggest, takes and returns the next Message from the queue. If the queue is empty (and there's nothing to return), the method calls native void nativePollOnce(long, int) which blocks until a new message is added. At this point you might ask how does nativePollOnce know when to wake up. That's a very good question. When a Message is added to the queue, the framework calls the enqueueMessage method, which not only inserts the message into the queue, but also calls native static void nativeWake(long), if there's need to wake up the queue. The core magic of nativePollOnce and nativeWake happens in the native (actually, C++) code. Native MessageQueue utilizes a Linux system call named epoll, which allows to monitor a file descriptor for IO events. nativePollOnce calls epoll_wait on a certain file descriptor, whereas nativeWake writes to the descriptor, which is one of the IO operations, epoll_wait waits for. The kernel then takes out the epoll-waiting thread from the waiting state and the thread proceeds with handling the new message. If you're familiar with Java's Object.wait() and Object.notify() methods, you can imagine that nativePollOnce is a rough equivalent for Object.wait() and nativeWake for Object.notify(), except they're implemented completely differently: nativePollOnce uses epoll and Object.wait() uses futex Linux call. It's worth noticing that neither nativePollOnce nor Object.wait() waste CPU cycles, as when a thread enters either method, it becomes disabled for thread scheduling purposes (quoting the javadoc for the Object class). However, some profilers may mistakenly recognize epoll-waiting (or even Object-waiting) threads as running and consuming CPU time, which is incorrect. If those methods actually wasted CPU cycles, all idle apps would use 100% of the CPU, heating and slowing down the device.

Conclusion:

You shouldn't worry about nativePollOnce. It just indicates that processing of all Messages has been finished and the thread waits for the next one. Well, that simply means you don't give too much work to your main thread ;)

translate.google:

Short answer:

The nativePollOnce method is used to "wait" until the next message is available. If it takes a long time during this call, your main thread has no actual work to do, but waits for the next event to be processed. Don't worry.

Explain:

Because the main thread is responsible for drawing UI and handling various events, the main thread has a loop to handle all these events. The loop is managed by L ooper, and its work is very simple: it handles all messages in MessageQueue.
For example, in response to input events, add messages to queues, frame rendering callbacks, and even your Handler.post call. Sometimes the main thread has nothing to do (that is, there is no Message in the queue), for example, after rendering a single frame (the thread has just drawn a frame and is ready for the next frame, waiting for the appropriate time). Two Java methods in the MessageQueue class are very interesting to us: Message next() and boolean enqueueMessage(Message, long). As the name implies, Message next() gets and returns the next Message from the queue. If the queue is empty (no return value), the method will call native void nativePollOnce(long, int), which will block until the new Message is added. At this time, you may ask nativePollOnce how to know when to wake up. This is a good question. When a Message is added to a queue, the framework calls the enqueueMessage method, which not only inserts the Message into the queue, but also calls the native static void nativeWake (long). The core magic of nativepolonce and nativeWake occurs in the native code. The native MessageQueue uses the Linux system call named epoll, which can monitor the file descriptor. The IO event in. nativePollOnce calls epoll \ wait on a file descriptor, while nativeWake writes an IO operation to the descriptor, epoll \ wait. Then, the kernel takes the epoll waiting thread out of the waiting state, and the thread continues to process new messages. If you are familiar with Java's Object.wait() and Object.notify() methods, you can imagine that nativePollOnce is large. To be equivalent to Object.wait(), nativeWake is equivalent to Object.notify(), but their implementation is totally different: nativePollOnce uses epoll, while Object. Wait uses futex Linux to call. It is worth noting that nativePollOnce and Object. Wait do not waste CPU cycles, because when a thread enters any method, for the purpose of thread scheduling, the thread will be disabled (referring to Object However, some profilers may mistakenly recognize the thread waiting for the epoll to wait (or even Object.wait) as running and consuming CPU time. If these methods actually waste CPU cycles, all idle applications will use 100% of the CPU to heat up and slow down the device.

Conclusion:

nativePollOnce. It simply indicates that all messages have been processed and the thread is waiting for the next message.

My previous understanding and sharing

Linux has multiple IO models:

  • Blocking IO
  • Non blocking IO
  • IO multiplexing, corresponding to select poll epoll, belongs to the call based on Io multiplexing mode.
  • Signal driven IO
  • Asynchronous IO

Look at the source code

Java this way.

enqueueMessage:

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }
    synchronized (this) {
        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }
        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            // Wake up the sleep of nativepolonce here
            nativeWake(mPtr);
        }
    }
    return true;
}

next:

Message next() {
    //...
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }
        // Nativepolonce, falling asleep, waiting to wake up
        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
            //...
        }
        //...
    }
}

CPP over there.

nativeWake

void NativeMessageQueue::wake() {
    mLooper->wake();
}
void Looper::wake() {
    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}

nativePollOnce:

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;

    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }

        result = pollInner(timeoutMillis);
    }
}
int Looper::pollInner(int timeoutMillis) {
    // Adjust the timeout based on when the next message is due.
    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
        if (messageTimeoutMillis >= 0
                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
            timeoutMillis = messageTimeoutMillis;
        }
    }

    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    // Focus here
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    // No longer idling.
    mPolling = false;

    // Acquire lock.
    mLock.lock();

    // Rebuild epoll set if needed.
    if (mEpollRebuildRequired) {
        mEpollRebuildRequired = false;
        rebuildEpollLocked();
        goto Done;
    }

    // Check for poll error.
    if (eventCount < 0) {
        if (errno == EINTR) {
            goto Done;
        }
        ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
        result = POLL_ERROR;
        goto Done;
    }

    // Check for poll timeout.
    if (eventCount == 0) {
        result = POLL_TIMEOUT;
        goto Done;
    }

    // Handle all events.
    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;

    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    // Invoke all response callbacks.
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

Posted by PHPcoder25 on Sat, 19 Oct 2019 22:47:54 -0700