Take the bead as the point, if the condition is satisfied, two sides are connected.
So you can find the maximum number of nodes that can be covered by n paths.
As we all know, minimum edge coverage = total number of points - Maximum Matching
Not here Link
So split the points and run the bipartite chart.
It'S about S to x.
The k-direction x 'continuous edge of a point satisfying the condition
x'connect to T
There are two ways
1. We add points in turn, and run the maximum flow in the residual network every time.
2. We have a two-point answer, running the maximum flow every time.
The former is faster.
QwQ
Output the answer depends on which side of the traffic is full.
/* @Date : 2019-07-20 15:12:45 @Author : Adscn (adscn@qq.com) @Link : https://www.cnblogs.com/LLCSBlog */ #include<bits/stdc++.h> using namespace std; #define IL inline #define RG register #define gi getint() #define gc getchar() #define File(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout) IL int getint() { RG int xi=0; RG char ch=gc; bool f=0; while(ch<'0'||ch>'9')ch=='-'?f=1:f,ch=gc; while(ch>='0'&&ch<='9')xi=(xi<<1)+(xi<<3)+ch-48,ch=gc; return f?-xi:xi; } template<typename T> IL void pi(T k,char ch=0) { if(k<0)k=-k,putchar('-'); if(k>=10)pi(k/10,0); putchar(k%10+'0'); if(ch)putchar(ch); } const int N=10000; const int T=30000; const int S=0; int sqr[N+7]; struct edge{ int v,nxt,flow; }e[200007]; int head[50007],cnt; int cur[50007]; inline void add(int u,int v,int flow) { e[cnt]=(edge){v,head[u],flow}; head[u]=cnt++; } inline void link(int u,int v,int flow){add(u,v,flow),add(v,u,0);} int dep[50007]; inline bool bfs(void) { static int Q[50007],l,r; memset(dep,0,sizeof dep); dep[Q[l=r=0]=S]=1; while(l<=r) { int p=Q[l++]; for(int i=head[p];~i;i=e[i].nxt) { int v=e[i].v; if(e[i].flow&&dep[v]==0)dep[v]=dep[p]+1,Q[++r]=v; } } return dep[T]; } inline int dfs(int p,int restflow) { if(p==T||restflow==0)return restflow; int sumflow=0; for(int &i=cur[p],flow;~i;i=e[i].nxt) { int v=e[i].v; if(e[i].flow&&dep[v]==dep[p]+1&& (flow=dfs(v,min(restflow,e[i].flow)))) { restflow-=flow,sumflow+=flow; e[i].flow-=flow,e[i^1].flow+=flow; if(restflow==0)break; } } return sumflow; } inline int dinic() { int maxflow=0; while(bfs()) memcpy(cur,head,sizeof head),maxflow+=dfs(S,2147483647); return maxflow; } int main(void) { memset(head,-1,sizeof head); int n=gi; for(int i=1;i<=N;++i)sqr[i]=i*i; int num=1,sum=0; while(1) { int maxsqr=lower_bound(sqr+1,sqr+N+1,2*num)-sqr-1; int minsqr=upper_bound(sqr+1,sqr+N+1,num)-sqr; link(S,num,1),link(num+N,T,1); for(int i=maxsqr;i>=minsqr;--i)link(sqr[i]-num,num+N,1); sum+=dinic(); if(num-sum>n)break; ++num; } --num; pi(num,'\n'); static int to[50007]; for(int k=1;k<=num;++k) for(int i=head[k];~i;i=e[i].nxt) if(!e[i].flow){if(e[i].v>N)to[k]=e[i].v-N;break;} static int vis[50007]; for(int i=1;i<=num;i++) if(!vis[i]) { for(int k=i;k;k=to[k])vis[k]=1,pi(k,' '); putchar('\n'); } return 0; }