meaning of the title
Sol
The topic can be converted into the number of \ (K \) selected from \ ([1, 2n + 1] \), so that the sum is \ ((n+1)k \).
Another conversion: divide \ ((n+1)k \) into \ (K \) numbers, so that each number can be in the range of \ ([1, 2n + 1] \)
At this time, you can use the idea of integer division dp (but I still can't think of goose.. )
Because each number is different from each other, we can regard the number divided in each stage as constant
Set \ (f[i][j] \) to represent the number of previous \ (I \) and the number of schemes that meet the conditions.
Let's consider whether the minimum number is \ (1 \)
I f not \ (1 \), map to all numbers \ (- 1 \), that is \ (f[i][j - i] \)
I f \ (1 \), it is equal to \ (+ 1 \) for all numbers of \ (f[i - 1][j - (i-1)] \), and \ (1 \) is added at the top, with the scheme of \ (f[i - 1][j - i] \)
Then subtract the scheme whose maximum number exceeds \ (2n+1 \), that is \ (f[i][j - (2n + 2)] \)
Complexity \ (O(Tnk^2) \)
#include<bits/stdc++.h> #define Fin(x) freopen(#x".in", "r", stdin); using namespace std; const int MAXN = 50001; int mod; template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;} template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;} template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;} template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;} template<typename A, typename B> inline int add(A &x, B y) {return x + y >= mod ? x + y - mod : x + y;} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int fp(int a, int p) { int base = 1; while(p) { if(p & 1) base = mul(base, a); a = mul(a, a); p >>= 1; } return base; } int inv(int x) { return fp(x, mod - 2); } int f[101][100001]; void solve() { int N = read(), K = read(); mod = read(); memset(f, 0, sizeof(f)); f[0][0] = 1; for(int j = 1; j <= (N + 1) * K; j++) for(int i = 1; i <= min(j, K); i++) { f[i][j] = add(f[i][j - i], f[i - 1][j - i]); if(j >= 2 * N + 2) add2(f[i][j], -f[i - 1][j - (2 * N + 2)] + mod); } cout << f[K][(N + 1) * K] << '\n'; } signed main() { for(int T = read(); T--; solve()); return 0; }