leetcode423. Reconstruct Original Digits from English

Keywords: Java less REST

Subject requirements

Given a non-empty string containing an out-of-order English representation of digits 0-9, output the digits in ascending order.

Note:
Input contains only lowercase English letters.
Input is guaranteed to be valid and can be transformed to its original digits. That means invalid inputs such as "abc" or "zerone" are not permitted.

Input length is less than 50,000.

Example 1:
Input: "owoztneoer"
Output: "012"

Example 2:
Input: "fviefuro"
Output: "45"

A non-empty English string containing English words with disorderly Arabic numerals. For example, 012 corresponds to zeroonetwo in English and continues to be in disorder as owoztneoer. Require the input of disorderly English expressions, find out all the 0-9 numbers contained in them, and output them from small to large.

Thoughts and Codes

First, list the numbers and the English expressions:

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine

At a rough glance, we know that many letters appear only in an English number, such as z only in zero. So for this letter, once it appears, it means that the number must appear.
So after a round of filtering, you can get the following letters that appear only once:

0 zero -> z
1 one
2 two -> w
3 three
4 four -> u
5 five
6 six -> x
7 seven
8 eight
9 nine

Then filter out the letters that appear only once for the rest of the digits:

1 one 
3 three -> r
5 five -> f
7 seven -> s
8 eight -> g
9 nine

Finally, one and nine can be distinguished by o and i respectively. So we can get the following code:

    public String originalDigits(String s) {
        int[] letterCount = new int[26];
        for(char c : s.toCharArray()) {
            letterCount[c-'a']++;
        }
        
        int[] result = new int[10];
        
        //zero
        if((result[2] = letterCount['z'-'a']) != 0) {
            result[0] = letterCount['z' - 'a'];
            letterCount['z'-'a'] = 0;
            letterCount['e'-'a'] -= result[0];
            letterCount['r'-'a'] -= result[0];
            letterCount['o'-'a'] -= result[0];
        }
        //two
        if((result[2] = letterCount['w'-'a']) != 0) {
            letterCount['t'-'a'] -= result[2];
            letterCount['w'-'a'] = 0;
            letterCount['o'-'a'] -= result[2];
        }
        //four
        if((result[4] = letterCount['u'-'a']) != 0) {
            letterCount['f'-'a'] -= result[4];
            letterCount['o'-'a'] -= result[4];
            letterCount['u'-'a'] -= result[4];
            letterCount['r'-'a'] -= result[4];
        }
        //five
        if((result[5] = letterCount['f'-'a']) != 0) {
            letterCount['f'-'a'] -= result[5];
            letterCount['i'-'a'] -= result[5];
            letterCount['v'-'a'] -= result[5];
            letterCount['e'-'a'] -= result[5];
        }
        //six
        if((result[6] = letterCount['x'-'a']) != 0) {
            letterCount['s'-'a'] -= result[6];
            letterCount['i'-'a'] -= result[6];
            letterCount['x'-'a'] -= result[6];
        }
        //seven
        if((result[7] = letterCount['s'-'a']) != 0) {
            letterCount['s'-'a'] -= result[7];
            letterCount['e'-'a'] -= result[7] * 2;
            letterCount['v'-'a'] -= result[7];
            letterCount['n'-'a'] -= result[7];
        }
        //one
        if((result[1] = letterCount['o'-'a']) != 0) {
            letterCount['o'-'a'] -= result[1];
            letterCount['n'-'a'] -= result[1];
            letterCount['e'-'a'] -= result[1];
        }
        //eight
        if((result[8] = letterCount['g'-'a']) != 0) {
            letterCount['e'-'a'] -= result[8];
            letterCount['i'-'a'] -= result[8];
            letterCount['g'-'a'] -= result[8];
            letterCount['h'-'a'] -= result[8];
            letterCount['t'-'a'] -= result[8];
        }
        //nine
        if((result[9] = letterCount['i'-'a']) != 0) {
            letterCount['n'-'a'] -= result[9] * 2;
            letterCount['i'-'a'] -= result[9];
            letterCount['e'-'a'] -= result[9];
        }
        result[3] = letterCount['t'-'a'];
        StringBuilder sb = new StringBuilder();
        for(int i = 0 ; i<result.length ; i++) {
            for(int j = 0 ; j<result[i] ; j++) {
                sb.append(i);
            }
        }
        return sb.toString();
    }

The above code is too tedious to write, and further optimization can be achieved as follows:

    public String originalDigits2(String s) {
        int[] alphabets = new int[26];
        for (char ch : s.toCharArray()) {
            alphabets[ch - 'a'] += 1;
        }
        
        int[] digits = new int[10];
        
        digits[0] = alphabets['z' - 'a'];
        digits[2] = alphabets['w' - 'a'];
        digits[6] = alphabets['x' - 'a'];
        digits[8] = alphabets['g' - 'a'];
        digits[7] = alphabets['s' - 'a'] - digits[6];
        digits[5] = alphabets['v' - 'a'] - digits[7];
        digits[3] = alphabets['h' - 'a'] - digits[8];
        digits[4] = alphabets['f' - 'a'] - digits[5];
        digits[9] = alphabets['i' - 'a'] - digits[6] - digits[8] - digits[5];
        digits[1] = alphabets['o' - 'a'] - digits[0] - digits[2] - digits[4];
        
        StringBuilder sb = new StringBuilder();
        for (int d = 0; d < 10; d++) {
            for (int count = 0; count < digits[d]; count++) sb.append(d);
        }
        
        return sb.toString();
    }

Posted by biohazardep on Sat, 20 Apr 2019 09:09:33 -0700