In the next section, we continue to learn process ID.
In the previous section, we mentioned that node is a hash element, which has not been explained much. Here we give a more detailed description.
This hash table is designed to find PID structure instances of PID arrays corresponding to specified PID values in a given namespace.
static struct hlist_head *pid_hash;
The hlist_head above is a standard data structure for the kernel, which is used to create a two-way hash table.
pid_hash is an array of hlist_head, global pid hash table, the number of buckets is between 16 and 4096, which is determined by the available memory of the system. pidhash_init() is used to calculate and match the appropriate memory.
If we have assigned a new pid instance and set the ID type, we can associate it with the process using the following functions.
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
struct pid *pid)
{
struct pid_link *link;
/* Establishing the relationship between task_struct and pid */
link = &task->pids[type];
link->pid = pid;
/* Establishing the relationship between pid and task_struct */
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
return 0;
}
Next we will focus on how to obtain local ids, such as task_pid, task_tgid and so on, through the data structure of the previous section, and the conversion process between the local number ID of the namespace and task_struct.
struct task_struct *find_task_by_pid_type_ns(int type, int nr,
struct pid_namespace *ns)
{
return pid_task(find_pid_ns(nr, ns), type);
}
EXPORT_SYMBOL(find_task_by_pid_type_ns);
/**
* Finding tasks through global pid
*/
struct task_struct *find_task_by_pid(pid_t nr)
{
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
}
EXPORT_SYMBOL(find_task_by_pid);
/**
* In the namespace of the current process, a process that finds a specific process number
*/
struct task_struct *find_task_by_vpid(pid_t vnr)
{
return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
current->nsproxy->pid_ns);
}
EXPORT_SYMBOL(find_task_by_vpid);
/**
* Find processes in namespaces based on id
*/
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
{
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
}
EXPORT_SYMBOL(find_task_by_pid_ns);
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(task->pids[type].pid);
rcu_read_unlock();
return pid;
}
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return pid_nr_ns(task_pid(tsk), ns);
}
EXPORT_SYMBOL(task_pid_nr_ns);
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return pid_nr_ns(task_tgid(tsk), ns);
}
EXPORT_SYMBOL(task_tgid_nr_ns);
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return pid_nr_ns(task_pgrp(tsk), ns);
}
EXPORT_SYMBOL(task_pgrp_nr_ns);
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return pid_nr_ns(task_session(tsk), ns);
}
EXPORT_SYMBOL(task_session_nr_ns);
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(task->pids[type].pid);
rcu_read_unlock();
return pid;
}
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result;
rcu_read_lock();
result = pid_task(pid, type);
if (result)
get_task_struct(result);
rcu_read_unlock();
return result;
}
How to generate a unique PID is described below.
The kernel uses a large bitmap to manage and track the PID. Each PID is marked by a bit, idle 0, and vice versa.
It is important to note that when PID allocation is used to establish a new process, local PID must be generated because the process may be visible in the dogmatic space. This needs to be processed in alloc_pid(), and then alloc_pidmap() can be called to allocate the pid. The same is true when released.
struct pid *alloc_pid(struct pid_namespace *ns)
{
struct pid *pid;
enum pid_type type;
int i, nr;
struct pid_namespace *tmp;
struct upid *upid;
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if (!pid)
goto out;
tmp = ns;
for (i = ns->level; i >= 0; i--) {
nr = alloc_pidmap(tmp);
if (nr < 0)
goto out_free;
pid->numbers[i].nr = nr;
pid->numbers[i].ns = tmp;
tmp = tmp->parent;
}
get_pid_ns(ns);
pid->level = ns->level;
atomic_set(&pid->count, 1);
for (type = 0; type < PIDTYPE_MAX; ++type)
INIT_HLIST_HEAD(&pid->tasks[type]);
spin_lock_irq(&pidmap_lock);
for (i = ns->level; i >= 0; i--) {
upid = &pid->numbers[i];
hlist_add_head_rcu(&upid->pid_chain,
&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
}
spin_unlock_irq(&pidmap_lock);
out:
return pid;
out_free:
for (i++; i <= ns->level; i++)
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
kmem_cache_free(ns->pid_cachep, pid);
pid = NULL;
goto out;
}
/**
* In a namespace, find and assign an available pid Number
*/
static int alloc_pidmap(struct pid_namespace *pid_ns)
{
int i, offset, max_scan, pid, last = pid_ns->last_pid;
struct pidmap *map;
pid = last + 1;
if (pid >= pid_max)
pid = RESERVED_PIDS;
offset = pid & BITS_PER_PAGE_MASK;
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
for (i = 0; i <= max_scan; ++i) {
if (unlikely(!map->page)) {
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
/*
* Free the page if someone raced with us
* installing it:
*/
spin_lock_irq(&pidmap_lock);
if (map->page)
kfree(page);
else
map->page = page;
spin_unlock_irq(&pidmap_lock);
if (unlikely(!map->page))
break;
}
if (likely(atomic_read(&map->nr_free))) {
do {
if (!test_and_set_bit(offset, map->page)) {
atomic_dec(&map->nr_free);
pid_ns->last_pid = pid;
return pid;
}
offset = find_next_offset(map, offset);
pid = mk_pid(pid_ns, map, offset);
/*
* find_next_offset() found a bit, the pid from it
* is in-bounds, and if we fell back to the last
* bitmap block and the final block was the same
* as the starting point, pid is before last_pid.
*/
} while (offset < BITS_PER_PAGE && pid < pid_max &&
(i != max_scan || pid < last ||
!((last+1) & BITS_PER_PAGE_MASK)));
}
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
++map;
offset = 0;
} else {
map = &pid_ns->pidmap[0];
offset = RESERVED_PIDS;
if (unlikely(last == offset))
break;
}
pid = mk_pid(pid_ns, map, offset);
}
return -1;
}
fastcall void free_pid(struct pid *pid)
{
/* We can be called with write_lock_irq(&tasklist_lock) held */
int i;
unsigned long flags;
spin_lock_irqsave(&pidmap_lock, flags);
for (i = 0; i <= pid->level; i++)
hlist_del_rcu(&pid->numbers[i].pid_chain);
spin_unlock_irqrestore(&pidmap_lock, flags);
for (i = 0; i <= pid->level; i++)
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
call_rcu(&pid->rcu, delayed_put_pid);
}
/**
* Release an available pid number in the namespace
*/
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
{
struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
int offset = pid & BITS_PER_PAGE_MASK;
clear_bit(offset, map->page);
atomic_inc(&map->nr_free);
}