I have a list of dictionaries that I want each item to be sorted by a specific attribute value.
Consider the following array,
[{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
When sorting by name, it should be
[{'name':'Bart', 'age':10}, {'name':'Homer', 'age':39}]
#1st floor
Using Perl's Schwartzian transformation,
py = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
do
sort_on = "name" decorated = [(dict_[sort_on], dict_) for dict_ in py] decorated.sort() result = [dict_ for (key, dict_) in decorated]
to
>>> result [{'age': 10, 'name': 'Bart'}, {'age': 39, 'name': 'Homer'}]
Of Perl Schwartzian transformation More information
In computer science, Schwartzian transformation is a Perl programming idiom used to improve the efficiency of sorting item lists.When sorting is actually based on an attribute (key) of an element, this usage applies to comparison-based sorting, where calculating the attribute is a dense operation that should be performed at least a few times.The obvious thing about Schwartzian transformation is that it does not use named temporary arrays.
#2nd floor
Suppose I have a dictionary D with elements below it.To sort, simply pass the custom function using the key parameter in the sort, as follows:
D = {'eggs': 3, 'ham': 1, 'spam': 2} def get_count(tuple): return tuple[1] sorted(D.items(), key = get_count, reverse=True) # or sorted(D.items(), key = lambda x: x[1], reverse=True) # avoiding get_count function call
inspect this Get out.
#3rd floor
This is an alternative generic solution - it sorts dict elements by keys and values.Its advantage - there is no need to specify keys, and it will still work if some keys are missing from some dictionaries.
def sort_key_func(item): """ helper function used to sort list of dicts :param item: dict :return: sorted list of tuples (k, v) """ pairs = [] for k, v in item.items(): pairs.append((k, v)) return sorted(pairs) sorted(A, key=sort_key_func)
#4th floor
If you want to sort the list by multiple keys, you can do the following:
my_list = [{'name':'Homer', 'age':39}, {'name':'Milhouse', 'age':10}, {'name':'Bart', 'age':10} ] sortedlist = sorted(my_list , key=lambda elem: "%02d %s" % (elem['age'], elem['name']))
It is quite shocking because it relies on converting values to a single string representation for comparison, but it also works well for numbers including negative numbers (although if you use numbers, you need to format the string appropriately with zero padding)
#5th floor
Using the pandas package is another option, although its large-scale operation is much slower than the more traditional methods suggested by others:
import pandas as pd listOfDicts = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}] df = pd.DataFrame(listOfDicts) df = df.sort_values('name') sorted_listOfDicts = df.T.to_dict().values()
Here are some benchmarks for small and large (100k +) dictionaries:
setup_large = "listOfDicts = [];\ [listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10})) for _ in range(50000)];\ from operator import itemgetter;import pandas as pd;\ df = pd.DataFrame(listOfDicts);" setup_small = "listOfDicts = [];\ listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}));\ from operator import itemgetter;import pandas as pd;\ df = pd.DataFrame(listOfDicts);" method1 = "newlist = sorted(listOfDicts, key=lambda k: k['name'])" method2 = "newlist = sorted(listOfDicts, key=itemgetter('name')) " method3 = "df = df.sort_values('name');\ sorted_listOfDicts = df.T.to_dict().values()" import timeit t = timeit.Timer(method1, setup_small) print('Small Method LC: ' + str(t.timeit(100))) t = timeit.Timer(method2, setup_small) print('Small Method LC2: ' + str(t.timeit(100))) t = timeit.Timer(method3, setup_small) print('Small Method Pandas: ' + str(t.timeit(100))) t = timeit.Timer(method1, setup_large) print('Large Method LC: ' + str(t.timeit(100))) t = timeit.Timer(method2, setup_large) print('Large Method LC2: ' + str(t.timeit(100))) t = timeit.Timer(method3, setup_large) print('Large Method Pandas: ' + str(t.timeit(1))) #Small Method LC: 0.000163078308105 #Small Method LC2: 0.000134944915771 #Small Method Pandas: 0.0712950229645 #Large Method LC: 0.0321750640869 #Large Method LC2: 0.0206089019775 #Large Method Pandas: 5.81405615807