BZOJ portal
Lough Valley Portal
Explanation:
First of all, the expectation problem related to binary bit is obviously to consider Min-Max exclusion.
The set of questions is obviously all binary bits.
So E(max (S) == T S(8722;1) 8721;T S(8722;1) 87878739 878739;+1E (min \(T)) \sum {T\subseteqS}(-1) ^{{{||+1} E (\min (T))) E(max (S) == T T ((;+1E(min(T))
Obviously, the earliest expected occurrence of elements in TTT sets is 1_U_T!= PU_dfrac{1} {sum limit_{U_capT!= empty} P_U} U_T!= PU_1
We need to find the sum of all PPP s that intersect with a set that is not empty.
It is transformed into finding the sum of all PPP s of a set intersecting with an empty set. It is found that all subsets of the set complement can be obtained by using the fast Mobius transformation directly.
Code:
#include<bits/stdc++.h> #define ll long long #define re register #define gc get_char #define cs const namespace IO{ inline char get_char(){ static cs int Rlen=1<<22|1; static char buf[Rlen],*p1,*p2; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++; } inline double getdb(){ char c; while(!isdigit(c=gc()));double x=c^48; while(isdigit(c=gc()))x=(x*10)+(c^48); if(c!='.')return x;double y=1; while(isdigit(c=gc()))x+=(y/=10)*(c^48); return x; } } using namespace IO; using std::cerr; using std::cout; cs int N=1<<20|1; double a[N]; int popcount[N]; signed main(){ #ifdef zxyoi freopen("or.in","r",stdin); #endif int len;scanf("%d",&len);len=1<<len;int ok=0; for(int re i=0;i<len;++i)a[i]=getdb(),popcount[i]=popcount[i>>1]^(i&1); for(int re i=0;i<len;++i)if(a[i]>1e-6)ok|=i; if(ok!=len-1)puts("INF"),exit(0); for(int re i=1;i<len;i<<=1) for(int re j=0;j<len;j+=i<<1) for(int re k=0;k<i;++k)a[i|k|j]+=a[k|j]; double ans=0; for(int re i=1;i<len;++i){ double val=1/(1-a[(len-1)^i]); popcount[i]?ans+=val:ans-=val; } printf("%.12f",ans); return 0; }