Description
There are n flowers, each flower has three attributes: flower shape (s), color (c), odor (m), and three integers. Now to rate each flower, the level of a flower is that it has more beautiful flowers than it can have. Define a flower A to be more beautiful than another flower B if and only if Sa > = Sb, Ca > = Cb, Ma > = Mb. Obviously, two flowers may have the same attributes. The number of flowers for each grade needs to be counted.
Input
The first behavior N, K (1 <= N <= 100,000, 1 <= K <= 200,000) denotes the number of flowers and the maximum attribute value, respectively.
The following N lines, three integers si, ci, mi (1 <= si, ci, mi <= K) per line, denote the attributes of the first flower
Output
Contains N rows, representing ratings of 0. Number of flowers per level of N-1.
Sample Input
10 3
3 3 3
2 3 3
2 3 1
3 1 1
3 1 2
1 3 1
1 1 2
1 2 2
1 3 2
1 2 1
Sample Output
3
1
3
0
1
0
1
0
0
1
HINT
1 <= N <= 100,000, 1 <= K <= 200,000
Solution: Three-dimensional... First-dimensional sorting, second-dimensional tree array, third-dimensional treap. Complexity: O(n*logn*logn)
//bzoj 3262
//One-Dimensional Sorting, Two-Dimensional BIT, Three-Dimensional Balanced Tree
#include <bits/stdc++.h>
using namespace std;
int n, m, tmp, root[200005], cnt[200005], ans[200005];
struct node{
int a, b, c;
node(){}
node(int a, int b, int c) : a(a), b(b), c(c) {}
bool operator < (const node &rhs) const{
if(a == rhs.a && b == rhs.b) return c < rhs.c;
if(a == rhs.a) return b < rhs.b;
return a < rhs.a;
}
} a[200005];
namespace multi_treap{
struct data{
int l, r, v, size, rnd, w;
}tree[5000005];
int size;
void update(int k)
{
tree[k].size = tree[tree[k].l].size + tree[tree[k].r].size + tree[k].w;
}
void rturn(int &k)
{
int t = tree[k].l;
tree[k].l = tree[t].r;
tree[t].r = k;
tree[t].size = tree[k].size;
update(k);
k = t;
}
void lturn(int &k)
{
int t = tree[k].r;
tree[k].r = tree[t].l;
tree[t].l = k;
tree[t].size = tree[k].size;
update(k);
k=t;
}
void insert(int &k, int x)
{
if(k == 0)
{
size++;
k = size;
tree[k].size = tree[k].w = 1;
tree[k].v = x;
tree[k].rnd = rand();
return ;
}
tree[k].size++;
if(tree[k].v==x) tree[k].w++;//Each node incidentally records the number of identical values with that node
else if(x > tree[k].v)
{
insert(tree[k].r, x);
if(tree[tree[k].r].rnd < tree[k].rnd) lturn(k);//Maintaining heap properties
}
else
{
insert(tree[k].l, x);
if(tree[tree[k].l].rnd < tree[k].rnd) rturn(k);
}
}
void del(int &k,int x)
{
if(k == 0)return;
if(tree[k].v == x)
{
if(tree[k].w > 1)
{
tree[k].w--;
tree[k].size--;
return;//If there are more than one of the same values, delete one
}
if(tree[k].l * tree[k].r == 0)k = tree[k].l + tree[k].r;//One son is empty.
else if(tree[tree[k].l].rnd < tree[tree[k].r].rnd)
rturn(k),del(k,x);
else lturn(k),del(k,x);
}
else if(x > tree[k].v)
tree[k].size--, del(tree[k].r,x);
else tree[k].size--, del(tree[k].l,x);
}
void query_rank(int k, int num){
if(!k) return ;
if(num == tree[k].v){tmp += tree[tree[k].l].size + tree[k].w; return;}
else if(num < tree[k].v) query_rank(tree[k].l, num);
else{tmp += tree[tree[k].l].size + tree[k].w; query_rank(tree[k].r, num);}
}
}
using namespace multi_treap;
namespace BIT{
inline int lowbit(int x){return x & (-x);}
inline void update(int x, int y) {for(int i = x; i <= m; i += lowbit(i)) insert(root[i], y);}
inline void query(int x, int y) {for(int i = x; i; i -= lowbit(i)) query_rank(root[i], y);}
}
using namespace BIT;
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d%d%d", &a[i].a, &a[i].b, &a[i].c);
sort(a + 1, a + n + 1);
for(int i = 1; i <= n; i++){
if(a[i].a == a[i+1].a && a[i].b == a[i+1].b && a[i].c == a[i+1].c && i!=n){
cnt[i+1] += cnt[i]+1;
}
else{
tmp = 0;
query(a[i].b, a[i].c);
ans[tmp] += cnt[i] + 1;
}
update(a[i].b, a[i].c);
}
for(int i = 0; i < n; i++) printf("%d\n", ans[i]);
return 0;
}
Another approach is CDQ:
Maintain three-dimensional partial order:
The first order, the second CDQ divide and conquer, and the third tree array.
First, we can combine all three-dimensional phases together and calculate them together.
We sort them by s and assign them to 1. tot in turn (where s is analogous to id).
Next, sort by c, and start the CDQ divide and conquer.
When calculating the impact of the left on the right:
A on the left is less than a on the right.
(2) On each side b also increases in turn.
(3) We only need to scan the right side and add the m of the flower whose left b is less than or equal to the current flower to the tree array. The number of m less than or equal to the current flower in the tree array is counted as the left three-dimensional is less than or equal to the current flower.
Complexity: O(n*logn*logn), but relative to the tree nest tree, the space complexity and programming complexity of CDQ are much smaller, and the running time is fast.
//bzoj 3262
//1-D sorting, 2-D dividing and conquering, 3-D tree array
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200005;
int n, m, ans[maxn], tree[maxn*4];
struct node{
int a, b, c, s, ans; //s handles the same continuity, and ans is smaller than the current beauty value
node(){}
node(int a, int b, int c, int s, int ans) : a(a), b(b), c(c), s(s), ans(ans) {}
bool operator < (const node &rhs) const{ //Sort by y
if(b == rhs.b) return c < rhs.c;
return b < rhs.b;
}
}a[maxn], p[maxn];
bool cmp(node x, node y){ //Sort by x
if(x.a == y.a && x.b == y.b) return x.c < y.c;
if(x.a == y.a) return x.b < y.b;
return x.a < y.a;
}
namespace BIT{
inline int lowbit(int x) {return x&-x;}
inline void update(int x, int y){for(int i = x; i <= m; i+=lowbit(i)) tree[i] += y;}
inline int query(int x){int res = 0; for(int i = x; i; i -= lowbit(i)) res += tree[i]; return res;}
}
using namespace BIT;
void CDQ(int l, int r)
{
if(l == r) return;
int mid = (l + r) >> 1;
CDQ(l, mid);
CDQ(mid+1, r);
sort(p + l, p + mid + 1);
sort(p + mid + 1, p + r + 1);
int i = l, j = mid + 1;
while(j <= r){
while(i <= mid && p[i].b <= p[j].b){
update(p[i].c, p[i].s);
i++;
}
p[j].ans += query(p[j].c);
j++;
}
for(int j = l; j < i; j++) update(p[j].c, -p[j].s);
}
int main(){
int nn;
scanf("%d%d", &nn, &m);
for(int i = 1; i <= nn; i++){
scanf("%d%d%d", &a[i].a, &a[i].b, &a[i].c);
}
sort(a + 1, a + nn + 1, cmp); //According to x row
int cnt = 0; //unique
for(int i = 1; i <= nn; i++){
cnt++;
if(a[i].a != a[i+1].a || a[i].b != a[i+1].b || a[i].c != a[i+1].c){
p[++n] = a[i];
p[n].s = cnt;
cnt = 0;
}
}
CDQ(1, n);
for(int i = 1; i <= n; i++){
ans[p[i].ans + p[i].s - 1] += p[i].s;
}
for(int i = 0; i < nn; i++){
printf("%d\n", ans[i]);
}
return 0;
}