Write a custom directory title here
Data Analysis and Display - Three Modules
Before learning how to crawl some useless data, now learn about data analysis
The three modules of learning are:
import pandas
import numpy
import matplotlib
install
pip installation website + download corresponding version of whl file + pip installation command
Basic concepts
Multidimensional data: list type
High-dimensional data: dictionary type
Basic usage of numpy Library
Creating N-Dimensional Array Objects: ndarray
import numpy # CalculationA**2+B**3The value of theA,BIt's a one-dimensional array, and the conventional solution is to take it out one by one and add it up by using a loop. def pysum(): a = [0,1,2,3,4] b = [9,8,7,6,5] c = [] for i in range(len(a)): c.append(a[i]**2+b[i]**3) return c print(pysum()) # CalculationA**2+B**3The value of theA,BIt's a one-dimensional array, and the conventional solution is to use the loops to extract and add one by one.NDimensional array objects: ndarray def npsum(): # numpy.array()generate ndarray array a = numpy.array([0,1,2,3,4]) b = numpy.array([9,8,7,6,5]) return a**2+b**3 print(npsum())
The data types returned are also different:
[729, 513, 347, 225, 141]
[729 513 347 225 141]
Printing N-Dimensional Array Objects: Some Properties of ndarray
import numpy a = numpy.array([[1,2,3,4,5],[2,3,4,5,6]]) zhi = a.ndim juzhen = a.shape length = a.size type = a.dtype single_size = a.itemsize print("Rank(dimension)Quantity:"+str(zhi)) print("N Dimensional array object scale (i.e. rows and columns):"+str(juzhen)) print("N Length of Dimensional Array Objects( m That's ok*n Column):"+str(length)) print("N Types of Dimensional Array Objects:"+str(type)) print("N The size of each element of the dimension array object:"+str(single_size))
Basic Use of matplotlib Library
Axis of coordinates
#@Time : 2019/4/19 12:59 #@Author :Waiter #@File :1.py import matplotlib.pyplot as plt input_values = [1,2,3,4,5] squares = [1,4,9,16,25] # plot()Functions are used to draw images # linewidth attributes control the thickness of lines plt.plot(input_values,squares,linewidth=5) # Setting title-related properties plt.title("Square Numbers",fontsize=24) # Setting labels for x and y axes plt.xlabel("x:",fontsize=14) plt.ylabel("y=x**2:",fontsize=14) # Set the size of the scale marker plt.tick_params(axis='both',labelsize=14) plt.show()
The effect is as follows: