Environment: Ubuntu 18.0.4 X86_64
Anaconda X86_64
tensorflow-gpu=1.12.0
Step 1: Download Anaconda X86_64 to your specified path
1 | $ wget https://Repo.continuum.io/archive/Anaconda 2-4.2.0-Linux-x86_64.sh# 64-bit system 2 | $ wget https://Repo.continuum.io/archive/Anaconda 2-4.2.0-Linux-x86.sh#32-bit system
Anconda installation using bash instructions:
$ bash Anaconda3-4.2.0-Linux-x86_64.sh
Go straight back to OK.
After installation, use the instructions to view the installation results:
conda info
Step 2: New environment under anaconda
Use instructions to create your own environment and specify the python version
conda create -n your_env_name python=3.6
Use instructions to enter the newly created environment for tensorflow installation:
source activate your_env_name
Step 3: In order to improve the installation speed, the domestic mirror can be added in advance:
# Tsinghua mirror image conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ # Display channel address when setting search conda config --set show_channel_urls yes # Mirror image of China Science and Technology University conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/ conda config --set show_channel_urls yes
Step 4: Install the corresponding libraries in the existing order
1. Installing numpy
2. Installing tensorflow-gpu
3. Install opencv
conda install numpy=1.15.1 conda install tensorflow-gpu=1.12.0 conda install opencv=4.0.0
Matters needing attention:
1. Ensure that CUDA and CUDN are installed on the server GPU and that the environment needs to be introduced into the environment variables of the new account:
# 1. Editing environment variables vim ~/.bashrc # 2. Add the following at the end of the document # cuda-9.0 export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} # 3. Use commands to verify the success of CUDA addition nvcc -V