Codeforces 868F. Yet Another Minimization Problem

DP
Let fi,j denote the minimum cost of dividing the first i into j intervals

So fi,k=min{fj,k+cost(j+1,i)}
It's like the old CF833B routine that can be maintained with segment trees.

But because cost()=ai(ai_1)2, which is not maintained with segment trees, it can not do so.

But it can be found that g(i)=fi,k and h(i)=cost(i,j) are convex functions, so it is possible that decision-making is monotonous.

Then we can divide and govern vigorously.

Then when dividing and conquering, we have to deal with cost().

Assuming that the transition interval is [l,r], and the transition interval is [l,r], we need to deal with the cost() of [L,l_1] before recursion to the next level, so as to ensure complexity.

O(nklogn)

#include <cstdio>
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long ll;

const int N=100010;

int n,k,tms,a[N];
ll f[25][N];
int b[N],t[N];

inline char nc(){
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}

inline void rea(int &x){
    char c=nc(); x=0;
    for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}

void solve(int l,int r,int L,int R,int K,ll cur){
    if(L>R) return ;
    int mid=L+R>>1,p;
    for(int i=L;i<=mid;i++) cur+=b[a[i]]++;
    for(int i=l;i<=r && i<=mid;i++){
        cur-=--b[a[i]];
        if(f[K-1][i]+cur<f[K][mid]) 
            f[K][mid]=f[K-1][i]+cur,p=i;
    }
    for(int i=L;i<=mid;i++) cur-=--b[a[i]];
    for(int i=l;i<=r && i<=mid;i++) cur+=b[a[i]]++;
    solve(l,p,L,mid-1,K,cur);
    for(int i=l;i<p;i++) cur-=--b[a[i]];
    for(int i=L;i<=mid;i++) cur+=b[a[i]]++;
    solve(p,r,mid+1,R,K,cur);
    for(int i=l;i<p;i++) b[a[i]]++;
    for(int i=L;i<=mid;i++) b[a[i]]--;
}

int main(){
    rea(n); rea(k);
    for(int i=1;i<=n;i++) rea(a[i]);
    ll cur=0;
    for(int i=1;i<=n;i++){
        cur+=b[a[i]]++;
        f[1][i]=cur;
    }
    for(int i=2;i<=k;i++)
        for(int j=1;j<=n;j++) f[i][j]=1LL<<60;
    for(int i=2;i<=k;i++){
        for(int j=1;j<=n;j++) b[j]=0;
        solve(1,n,1,n,i,0);
    }
    cout<<f[k][n]<<endl;
    return 0;
}

Posted by Skepsis on Thu, 14 Feb 2019 07:42:20 -0800