meaning of the title
Sol
It's not hard to think of a dp first
Set \ (f[i][j] \) to indicate that \ (I \) strictly increasing schemes with the maximum number of \ (j \) are selected
When transferring, judge whether the last position is \ (j \)
\[f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * j\]
for(int i = 0; i <= A; i++) f[0][i] = 1; for(int i = 1; i <= N; i++) for(int j = 1; j <= A; j++) f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j)); cout << mul(f[N][A], fac[N]);
It's still hard to find out. Take the transfer apart
\(f[i][j] = \sum_{k = 0}^{j - 1} f[i - 1][k] * (k + 1)\)
This transfer is very interesting
If we regard \ (i \) as a column and \ (k \) as a row, then in fact, when we transfer, we first multiply a coefficient \ (k \) on the \ (k \) row and then sum it
If we regard the \ (i - 1 \) column as a \ (t \) degree polynomial, it is obvious that the \ (i \) column is a \ (t+2 \) degree polynomial (sum once, multiply once)
In this way, the \ (i \) column is a polynomial of the highest \ (2i+1 \) degree
Just plug in
// luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; const int MAXN = 10001; int A, N, Lim, mod, f[501][MAXN], fac[MAXN], y[MAXN]; int add(int x, int y) { if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } void add2(int &x, int y) { if(x + y < 0) x = (x + y + mod); else x = (x + y >= mod ? x + y - mod : x + y); } int mul(int x, int y) { return 1ll * x * y % mod; } int fp(int a, int p) { int base = 1; while(p) { if(p & 1) base = mul(base, a); a = mul(a, a); p >>= 1; } return base; } int Large(int *y, int k) { static int x[MAXN], ans = 0; for(int i = 1; i <= Lim; i++) x[i] = i; for(int i = 0; i <= Lim; i++) { int up = y[i], down = 1; for(int j = 0; j <= Lim; j++) { if(i == j) continue; up = mul(up, add(k, -x[j])); down = mul(down, add(x[i], -x[j])); } add2(ans, mul(up, fp(down, mod - 2))); } return ans; } int main() { #ifndef ONLINE_JUDGE freopen("a.in", "r", stdin); // freopen("a.out", "w", stdout); #endif cin >> A >> N >> mod; Lim = 2 * N + 1; fac[0] = 1; for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]); for(int i = 0; i <= Lim; i++) f[0][i] = 1; for(int i = 1; i <= N; i++) { for(int j = 1; j <= Lim; j++) { f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j)); } } for(int i = 0; i <= Lim; i++) y[i] = f[N][i]; cout << mul(Large(y, A), fac[N]); return 0; }