tuple
Purpose: store multiple types of values (variable types are not allowed)
Definition method: data is stored in parentheses and separated by commas (the value cannot be changed)
When defining a container type, if there is only one value in it, add a comma after the value. In a tuple, no addition is a string
Tuple Type Summary: ordered, immutable, multiple values stored
t1 = ('a','b','c','a') # t1 = tuple(('a','b','c')) print(t1) print(type(t1)) //Print results: ('a', 'b', 'c', 'a') <class 'tuple'>
common method
1. Index value
t1 = ('a','b','c','a') print(t1[0]) //Print results: a
2. Index slice
t1 = ('a','b','c','a') print(t1[0:2]) //Print results: ('a', 'b')
3. Member operation
t1 = ('a','b','c','a') print('a' in t1 ) print('a'not in t1 ) //Print results: True False
4. len: get the number of elements in the current tuple
t1 = ('a','b','c','a') print(len(t1)) //Print results: 4
5. Count: count the number of elements in the current tuple
t1 = ('a','b','c','a') print(t1.count('a')) //Print results: 2
6. Index: get the index value of the current tuple, and specify the search range
t1 = ('a','b','c','a') print(t1.index('b')) //Print results: 1
Dictionary dict
Purpose: the name of the dictionary indicates the purpose of this data structure. A normal book is suitable for reading from the beginning to the end. If you like, you can quickly turn to any page, which is a bit like a list in Python. Dictionaries (everyday dictionaries and python dictionaries) are designed to make it easy for you to find specific words (keys) to learn their definitions (values)
Definition method: store data by braces, define key value pairs by key:value, and separate each key value pair by comma
key: must be immutable type value: can be any type
# 1, d1 = {'name':'egon','age':'84'} print(d1) # 2, d2 = dict({'name':'egon','age':'84'}) print(d2) # 3, l1 = ['name','age'] l2 = ['egon','84'] z1 = zip(l1,l2) print(dict(z1)) //Print results: {'name': 'egon', 'age': '84'} {'name': 'egon', 'age': '84'} {'name': 'egon', 'age': '84'}
common method
1. Value according to the key:value mapping relationship (can be saved or modified)
d1 = {'name':'egon','age':'84'} print(d1['name']) print(d1['age']) d1['name'] = 'tank' d1['gender'] = 'male' print(d1) //Print results: egon 84 {'name': 'tank', 'age': '84', 'gender': 'male'}
2. Member operation in, not in
d1 = {'name':'egon','age':'84'} print('egon' in d1) //Print results: False
3. len: get the number of key value pairs in the dictionary
d1 = {'name':'egon','age':'84'} print(len(d1)) //Print results: 2
4. Get: get the value of the specified key. If it does not exist, it returns None by default
d1 = {'name':'egon','age':'84'} print(d1.get('gender')) # The second parameter can be used to modify the content returned by default print(d1.get('gender','no')) //Print results: None no
5. keys, value, items: combined with for recycling
d1 = {'name':'egon','age':'84'} print(d1.keys()) # Return all key print(d1.values()) # Return all value print(d1.items()) # Return all key value pairs, list elements on return for keys in d1.keys(): print(keys) for value in d1.values(): print(value) for items in d1.items(): print(items) //Print results: dict_keys(['name', 'age']) dict_values(['egon', '84']) dict_items([('name', 'egon'), ('age', '84')]) name age egon 84 ('name', 'egon') ('age', '84')
6. pop: specify key to delete, with return value
d1 = {'name':'egon','age':'84'} d1.pop('name') print(d1) //Print results: {'age': '84'}
7. popitem: randomly delete a group of key value pairs, and the key value pairs returned are tuples
d1 = {'name':'egon','age':'84'} d1.popitem() print(d1) //Print results: {'name': 'egon'}
8. update: replace old dictionary with salary dictionary
d1 = {'name':'egon','age':'84'} d2 = {'1':'a'} d1.update(d2) print(d1) d1.update({'name':'tank'}) print(d1) //Print results: {'name': 'egon', 'age': '84', '1': 'a'} {'name': 'tank', 'age': '84', '1': 'a'}
9. fromkeys: a new dictionary will be generated. For the first parameter, each element of the first parameter will be the key, and the next parameter will be the value to form a new dictionary
d1 = {'name':'egon','age':'84'} print(dict.fromkeys([1,2,3],['ke','k1'])) //Print results: {1: ['ke', 'k1'], 2: ['ke', 'k1'], 3: ['ke', 'k1']}
10. setdefault: the value of the new key value pair is returned if the key does not exist
d1 = {'name':'egon'} print(d1.setdefault('name',1)) print(d1) //Print results: egon {'name': 'egon'}
aggregate
Purpose: de duplication, relation operation
Definition method: data is stored by braces, and each element is separated by commas
Defining an empty set must be defined using set()
Type Summary: unordered (no index), variable, multiple values stored
Can be added or deleted, but cannot be changed
Common methods:
Consortium:
Intersection:
Difference sets:
Symmetric difference set:^
# Two identical elements are not possible in a collection python_student = {'egon', 'jason', 'tank', 'owen', 'egon'} linux_student = {'frank', 'alex', 'egon'} go_student = {'egon'} print(python_student) print(python_student | linux_student) print(python_student & linux_student) print(python_student - linux_student) print(linux_student - python_student) print(python_student ^ linux_student) print(python_student > go_student) #Judging parent set print(python_student < linux_student) #Judgement subset //Print results: {'jason', 'egon', 'tank', 'owen'} {'tank', 'alex', 'owen', 'jason', 'egon', 'frank'} {'egon'} {'jason', 'tank', 'owen'} {'frank', 'alex'} {'alex', 'frank', 'tank', 'owen', 'jason'} True False