preface
The text and pictures of this article are from the Internet, only for learning and communication, not for any commercial purpose. The copyright belongs to the original author. If you have any questions, please contact us in time for handling.
1. Tree view
The tree view combines similar points according to a given distance measure, and organizes them into tree links according to the similarity of the points.
import scipy.cluster.hierarchy as shc # Import Data df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv') # Plot plt.figure(figsize=(16, 10), dpi= 80) plt.title("USArrests Dendograms", fontsize=22) dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100) plt.xticks(fontsize=12) plt.show()
2. Clustering graph
A cluster map can be used to divide points that belong to the same cluster. The following is an example of how states in the United States are divided into five groups based on the USArrests dataset. The cluster graph uses murder and attack columns as X and Y axes. Alternatively, you can use the first to first major component as the X and Y axes.
from sklearn.cluster import AgglomerativeClustering from scipy.spatial import ConvexHull # Import Data df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv') # Agglomerative Clustering cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward') cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']]) # Plot plt.figure(figsize=(14, 10), dpi= 80) plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10') # Encircle def encircle(x,y, ax=None, **kw): if not ax: ax=plt.gca() p = np.c_[x,y] hull = ConvexHull(p) poly = plt.Polygon(p[hull.vertices,:], **kw) ax.add_patch(poly) # Draw polygon surrounding vertices encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0) # Decorations plt.xlabel('Murder'); plt.xticks(fontsize=12) plt.ylabel('Assault'); plt.yticks(fontsize=12) plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22) plt.show()
3. Andrews curve
The Andrews curve helps to visualize whether there are inherent groupings based on the numerical characteristics of a given group. If the features (columns in the dataset) cannot be grouped in a help area, the rows cannot be separated well, as follows
from pandas.plotting import andrews_curves # Import df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") df.drop(['cars', 'carname'], axis=1, inplace=True) # Plot plt.figure(figsize=(12,9), dpi= 80) andrews_curves(df, 'cyl', colormap='Set1') # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.title('Andrews Curves of mtcars', fontsize=22) plt.xlim(-3,3) plt.grid(alpha=0.3) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show()
4. Parallel graph
Parallel coordinates help to visualize whether a function helps to effectively isolate groups. If isolated, this feature can be useful in predicting the group.
from pandas.plotting import parallel_coordinates # Import Data df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv") # Plot plt.figure(figsize=(12,9), dpi= 80) parallel_coordinates(df_final, 'cut', colormap='Dark2') # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.title('Parallel Coordinated of Diamonds', fontsize=22) plt.grid(alpha=0.3) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show()
Welcome to the top right corner to pay attention to the editor. In addition to sharing technical articles, there are many benefits. Private learning materials can be obtained, including but not limited to Python practice, PDF electronic documents, interview brochures, learning materials, etc.