[Xuefeng magnetic needle stone blog] computer vision opcencv tool deep learning fast practice 1 face recognition

Keywords: Python OpenCV network github

Using the pre trained deep learning face detector model provided by OpenCV, face recognition can be carried out quickly and accurately.

In August 2017, OpenCV 3.3 was officially released, bringing a highly improved "DNN deep neural networks" module. The module supports many deep learning frameworks, including Caffe, TensorFlow and Torch / PyTorch.

Caffe based face detector in Here.

Two sets of files are required:

  • . prototype file defining the model architecture
  • . caffemodel file containing the weight of the actual layer

The weight file is not included in the OpenCV sample directory.

How does OpenCV deep learning face detector work?

# Model Download: https://itbooks.pipipan.com/fs/18113597-320346529
# Code storage: https://github.com/china-testing/python-api-testing/tree/master/opencv'crash'deep'learning
# Technical support qq group 144081101 (code and model storage)
# USAGE
# python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
    help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
    help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
    (300, 300), (104.0, 177.0, 123.0))

# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()

# loop over the detections
for i in range(0, detections.shape[2]):
    # extract the confidence (i.e., probability) associated with the
    # prediction
    confidence = detections[0, 0, i, 2]

    # filter out weak detections by ensuring the `confidence` is
    # greater than the minimum confidence
    if confidence > args["confidence"]:
        # compute the (x, y)-coordinates of the bounding box for the
        # object
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")
 
        # draw the bounding box of the face along with the associated
        # probability
        text = "{:.2f}%".format(confidence * 100)
        y = startY - 10 if startY - 10 > 10 else startY + 10
        cv2.rectangle(image, (startX, startY), (endX, endY),
            (0, 0, 255), 2)
        cv2.putText(image, text, (startX, y),
            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)

Implementation:

$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

The upper face has a 74.30% confidence level. Although opencv's Haar cascade lacks "direct" angle faces, it can still detect faces by using OpenCV's deep learning face detector.

Here are three examples of faces:

python detect_faces.py --image iron_chic.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

Face detection in video, video stream and webcam applications

# USAGE
# python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

# import the necessary packages
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
    help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
    help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

# initialize the video stream and allow the cammera sensor to warmup
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

# loop over the frames from the video stream
while True:
    # grab the frame from the threaded video stream and resize it
    # to have a maximum width of 400 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=400)
 
    # grab the frame dimensions and convert it to a blob
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
        (300, 300), (104.0, 177.0, 123.0))
 
    # pass the blob through the network and obtain the detections and
    # predictions
    net.setInput(blob)
    detections = net.forward()

    # loop over the detections
    for i in range(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with the
        # prediction
        confidence = detections[0, 0, i, 2]

        # filter out weak detections by ensuring the `confidence` is
        # greater than the minimum confidence
        if confidence < args["confidence"]:
            continue

        # compute the (x, y)-coordinates of the bounding box for the
        # object
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")
 
        # draw the bounding box of the face along with the associated
        # probability
        text = "{:.2f}%".format(confidence * 100)
        y = startY - 10 if startY - 10 > 10 else startY + 10
        cv2.rectangle(frame, (startX, startY), (endX, endY),
            (0, 0, 255), 2)
        cv2.putText(frame, text, (startX, y),
            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

    # show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
 
    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

Implementation:

python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

Reference material

Introduction to other python face recognition databases

Introduction to python library face recognition

Face box recognition can be commanded.

$ face_detection --model cnn iron_chic.jpg 
iron_chic.jpg,79,422,243,258
iron_chic.jpg,146,272,310,108
iron_chic.jpg,194,144,330,7

Posted by naveenbj on Fri, 06 Dec 2019 20:59:43 -0800