Use $FFT $for string matching, immortal operation...
For two strings, $A, $B, $dis (A,B) = sum_i (A_i-B_i) ^ 2$
Obviously, if and only if $A=B, $dis(A,B)=0$
There is also a requirement that'*'be wildcards, so the question of $dis (A, B)= sum_i((A_i-B_i)^ 2 [A_i!='*'] [B_i!='*].$
It is found that if'*'is set to $0, then $dis (A, B)= sum_i((A_i-B_i)^ 2A_iB_i)$
For this question, let the $A $string be a template string, then for the $B $string, $[i-m+1,i]$, if matched
Then $dis [i]= sum {j=0} ^ {m-1} ((A_j-B_{i-m+1+j}) ^ 2A_jB_{i-m+1+j})$
Turn $A into $A'$and fill in the following zero until it is the same length as $B, then $dis [i]= sum {j=0} ^ {m-1} ((A'_j-B_{i-j}) ^ 2A'_jB_{i-j})$
Expansion
$dis[i]=\sum_{j=0}^{m-1}{A'}_{j}^{3}B_{i-j}-2\sum_{j=0}^{m-1}{A'}_{j}^{2}B_{i-j}^2+\sum_{j=0}^{m-1}{A'}_{j}B_{i-j}^{3}$
Then three segments of $FFT $would be fine.
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using namespace std; typedef long long ll; typedef double db; inline int read() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); } return x*f; } const int N=2e6+7; const db pi=acos(-1.0); struct CP { db x,y; CP (db xx=0,db yy=0) { x=xx,y=yy; } inline CP operator + (const CP &tmp) const { return CP(x+tmp.x,y+tmp.y); } inline CP operator - (const CP &tmp) const { return CP(x-tmp.x,y-tmp.y); } inline CP operator * (const CP &tmp) const { return CP(x*tmp.x-y*tmp.y,x*tmp.y+y*tmp.x); } }A[N],B[N],C[N]; int n,m,p[N]; void FFT(CP *A,int len,int type) { for(int i=0;i<len;i++) if(i<p[i]) swap(A[i],A[p[i]]); for(int mid=1;mid<len;mid<<=1) { CP wn(cos(pi/mid),type*sin(pi/mid)); for(int R=mid<<1,j=0;j<len;j+=R) { CP w(1,0); for(int k=0;k<mid;k++,w=w*wn) { CP x=A[j+k],y=w*A[j+mid+k]; A[j+k]=x+y; A[j+mid+k]=x-y; } } } } char sa[N],sb[N]; int a[N],b[N],ans[N],Top; int main() { m=read(),n=read(); scanf("%s%s",sa,sb); for(int i=0;i<m;i++) a[m-i-1]= sa[i]!='*' ? sa[i]-'a'+1 : 0; for(int i=0;i<n;i++) b[i]= sb[i]!='*' ? sb[i]-'a'+1 : 0; int len=1,tot=0; while(len<n+m-1) len<<=1,tot++; for(int i=0;i<len;i++) p[i]=(p[i>>1]>>1) | ((i&1)<<(tot-1)); for(int i=0;i<=len;i++) A[i].x=a[i]*a[i]*a[i],B[i].x=b[i];//here AB No value, directly to x Assignment is OK FFT(A,len,1); FFT(B,len,1); for(int i=0;i<=len;i++) C[i]=A[i]*B[i]; for(int i=0;i<=len;i++) A[i]=CP(a[i]*a[i],0),B[i]=CP(b[i]*b[i],0);//Be careful AB At this point, there is a value to initialize FFT(A,len,1); FFT(B,len,1); for(int i=0;i<=len;i++) C[i]=C[i]-A[i]*B[i]*CP(2,0); for(int i=0;i<=len;i++) A[i]=CP(a[i],0),B[i]=CP(b[i]*b[i]*b[i],0); FFT(A,len,1); FFT(B,len,1); for(int i=0;i<=len;i++) C[i]=C[i]+A[i]*B[i]; FFT(C,len,-1); for(int i=m-1;i<n;i++) if(C[i].x/len<0.5) ans[++Top]=i-m+2; printf("%d\n",Top); for(int i=1;i<=Top;i++) printf("%d ",ans[i]); if(Top) printf("\n"); return 0; }